Solveeit Logo

Question

Question: How do you find the integral of \[{{\cos }^{-1}}x\left( x \right)\]?...

How do you find the integral of cos1x(x){{\cos }^{-1}}x\left( x \right)?

Explanation

Solution

From the question we have been asked to find the integral of a given inverse trigonometric function. For solving this question we will use the concept of integration and its applications. We use the formulae of integration by parts which is udv=uvvdu\Rightarrow \int{udv=uv-\int{vdu}} and we will simplify further using basic mathematical operations like multiplications, addition to solve this question.

Complete step by step answer:
Here let us assume the given expression as follows,
I=cos1x(x)dxI=\int{{{\cos }^{-1}}x\left( x \right)dx}
Now we will use the integration by parts formula, which is udv=uvvdu\Rightarrow \int{udv=uv-\int{vdu}} to the above equation. so, we get the equation reduced as follows.
I=cos1xxdx(ddx(cos1x)xdx)dx\Rightarrow I={{\cos }^{-1}}x\int{xdx-\int{\left( \dfrac{d}{dx}\left( {{\cos }^{-1}}x \right)\int{xdx} \right)dx}}
Here we use the formulae xndx=xn+1n+1\Rightarrow \int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1} and cos1x=11x2\Rightarrow \int{{{\cos }^{-1}}x}=\dfrac{-1}{\sqrt{1-{{x}^{2}}}}
I=cos1x(x22)11x2×x22dx\Rightarrow I={{\cos }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)-\int{\dfrac{-1}{\sqrt{1-{{x}^{2}}}}\times \dfrac{{{x}^{2}}}{2}dx}
I=cos1x(x22)+12x21x2dx\Rightarrow I={{\cos }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{1}{2}\int{\dfrac{{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}dx}
Now we will assume the above equation as follows.
I=cos1x(x22)+12I1\Rightarrow I={{\cos }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{1}{2}{{I}_{1}}
Where I1=x21x2dx{{I}_{1}}=\int{\dfrac{{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}dx}
Now we use the substitution method and substitute x=sinux=\sin u. So, we get the dx=cosududx=\cos udu as derivative of ddxsinx=cosx\dfrac{d}{dx}\sin x=\cos x.
So, we will take the above equation and substitute the new x values and do the calculation.
So, we get as follows.
I1=x21x2dx\Rightarrow {{I}_{1}}=\int{\dfrac{{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}dx}
I1=sin2u1sin2ucosudu\Rightarrow {{I}_{1}}=\int{\dfrac{{{\sin }^{2}}u}{\sqrt{1-{{\sin }^{2}}u}}\cos udu}
Here we use the formulae 1sin2x=cos2x\Rightarrow 1-{{\sin }^{2}}x={{\cos }^{2}}x.
I1=sin2ucos2ucosudu\Rightarrow {{I}_{1}}=\int{\dfrac{{{\sin }^{2}}u}{\sqrt{{{\cos }^{2}}u}}\cos udu}
I1=sin2ucosucosudu\Rightarrow {{I}_{1}}=\int{\dfrac{{{\sin }^{2}}u}{\cos u}\cos udu}
I1=sin2udu\Rightarrow {{I}_{1}}=\int{{{\sin }^{2}}udu}
Here we use the formulae cos2x=12sin2x\Rightarrow \cos 2x=1-2{{\sin }^{2}}x.
I1=1cos2u2du\Rightarrow {{I}_{1}}=\int{\dfrac{1-\cos 2u}{2}du}
I1=12(usin2u2)+c\Rightarrow {{I}_{1}}=\dfrac{1}{2}\left( u-\dfrac{\sin 2u}{2} \right)+c
I1=12(usinucosu)+c\Rightarrow {{I}_{1}}=\dfrac{1}{2}\left( u-\sin u\cos u \right)+c
I1=12(usinu1sin2u)+c\Rightarrow {{I}_{1}}=\dfrac{1}{2}\left( u-\sin u\sqrt{1-{{\sin }^{2}}u} \right)+c
Now we will substitute back the values of x we took previously. So, we get the equation reduced as follows.
I1=12(sin1xx1x)+c\Rightarrow {{I}_{1}}=\dfrac{1}{2}\left( {{\sin }^{-1}}x-x\sqrt{1-x} \right)+c
Now we will take this and substitute in the equation I=cos1x(x22)+12I1\Rightarrow I={{\cos }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{1}{2}{{I}_{1}}. So, we get the equation reduced as follows.
I=cos1x(x22)+12I1\Rightarrow I={{\cos }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{1}{2}{{I}_{1}}
I=cos1x(x22)+12(12(sin1xx1x)+c)\Rightarrow I={{\cos }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{1}{2}\left( \dfrac{1}{2}\left( {{\sin }^{-1}}x-x\sqrt{1-x} \right)+c \right)
I=cos1x(x22)+(14(sin1xx1x))+C\Rightarrow I={{\cos }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+\left( \dfrac{1}{4}\left( {{\sin }^{-1}}x-x\sqrt{1-x} \right) \right)+C

Note: Students must have good knowledge in the concept of inverse trigonometry and trigonometry and its applications. We must also know the formulae in integrations to solve this question. The formulae we required to solve this question are as follows.
udv=uvvdu\Rightarrow \int{udv=uv-\int{vdu}}
xndx=xn+1n+1\Rightarrow \int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1} and cos1x=11x2\Rightarrow \int{{{\cos }^{-1}}x}=\dfrac{-1}{\sqrt{1-{{x}^{2}}}}
1sin2x=cos2x\Rightarrow 1-{{\sin }^{2}}x={{\cos }^{2}}x
cos2x=12sin2x\Rightarrow \cos 2x=1-2{{\sin }^{2}}x