Solveeit Logo

Question

Question: How do you find the integral \(\int {x \cdot \sqrt {1 - {x^4}} } dx\) ?...

How do you find the integral x1x4dx\int {x \cdot \sqrt {1 - {x^4}} } dx ?

Explanation

Solution

Here we integrate the numerical by following the substitution method.
On replace x2{x^2} with sint\sin t. We differentiate both sides of x2=sint{x^2} = \sin t and get our answer as 2xdx=costdt2xdx = \cos tdt.
We replace 2xdx2xdx with 12costdt\dfrac{1}{2}\cos tdtand then solve our integral further using trigonometric identities.
After we have simplified our sum, we just simply integrate the terms. Then we place back the original variables in the substituted variables to get our required answer.

Formula used: sin2t+cos2t=1{\sin ^2}t + {\cos ^2}t = 1, cos2t=cos2tsin2t\cos 2t = {\cos ^2}t - {\sin ^2}t and sin2t=2sintcost\sin 2t = 2\sin t\cos t

Complete step-by-step solution:
The given integral is x1x4dx\int {x \cdot \sqrt {1 - {x^4}} } dx.
We can also write the given integral in the form: x1(x2)2dx\int {x \cdot \sqrt {1 - {{\left( {{x^2}} \right)}^2}} } dx.…… let’s call this as equation (A)
Now, In order to solve this, we use the substitution method to make solving our sum easier.
Let’s substitute x2=sint{x^2} = \sin t
Now on differentiating both the sides of the above equation, we get:
2xdx=costdt2xdx = \cos tdt. Placing this in equation (A), we get:
121sin2tdt(2xdx)\Rightarrow \int {\dfrac{1}{2}\sqrt {1 - {{\sin }^2}tdt} \left( {2xdx} \right)} ………….we take 12\dfrac{1}{2} outside of the bracket in order to balance the 2xdx2xdx
We know that 2xdx=costdt2xdx = \cos tdt, therefore our equation becomes:
12costdt1sin2tdt\Rightarrow \int {\dfrac{1}{2}\cos tdt\sqrt {1 - {{\sin }^2}tdt} }
Now according to the identity: sin2t+cos2t=1{\sin ^2}t + {\cos ^2}t = 1
Therefore, cos2t=1sin2t{\cos ^2}t = 1 - {\sin ^2}t
Placing this in our integral equation, we get:
12costdtcos2tdt\Rightarrow \int {\dfrac{1}{2}\cos tdt\sqrt {{{\cos }^2}tdt} }
On squaring we get
12costdt×costdt\Rightarrow \int {\dfrac{1}{2}\cos tdt \times \cos tdt}
On multiply the term and we get
12cos2tdt\Rightarrow \int {\dfrac{1}{2}{{\cos }^2}tdt}………………………….consider this to be equation (B)
Now according to the identity: cos2t=cos2tsin2t\cos 2t = {\cos ^2}t - {\sin ^2}t
Now we know that sin2t=1cos2t{\sin ^2}t = 1 - {\cos ^2}t
Therefore, cos2t=cos2t(1cos2t)\cos 2t = {\cos ^2}t - \left( {1 - {{\cos }^2}t} \right)
On expanding it, we get:
cos2t=cos2t1+cos2t=2cos2t1\Rightarrow \cos 2t = {\cos ^2}t - 1 + {\cos ^2}t = 2{\cos ^2}t - 1
Thus, cos2t=2cos2t1\cos 2t = 2{\cos ^2}t - 1
Now adding +1 + 1 to both sides, we get:
cos2t+1=2cos2t\Rightarrow \cos 2t + 1 = 2{\cos ^2}t
Dividing both sides with22 , we get:
cos2t+12=cos2t\Rightarrow \dfrac{{\cos 2t + 1}}{2} = {\cos ^2}t
On placing the value of cos2t{\cos ^2}t in equation (B) which is 12cos2tdt\int {\dfrac{1}{2}{{\cos }^2}tdt} , we get:
12(cos2t+12)dt\Rightarrow \int {\dfrac{1}{2}\left( {\dfrac{{\cos 2t + 1}}{2}} \right)dt}
Taking 12\dfrac{1}{2} as a common factor outside, we get:
12×12(cos2t+1)dt\Rightarrow \int {\dfrac{1}{2} \times \dfrac{1}{2}\left( {\cos 2t + 1} \right)dt}
14(cos2t+1)dt\Rightarrow \int {\dfrac{1}{4}\left( {\cos 2t + 1} \right)dt}
Now let’s integrate within the bracket:
14cos2tdt+1dt\Rightarrow \dfrac{1}{4}\int {\cos 2tdt + \int {1dt} }
We know that cos2tdt=sin2t2\int {\cos 2tdt = \dfrac{{\sin 2t}}{2}} and 1dt=t\int {1dt = t}
Therefore, we have 14[sin2t2+t]+C\dfrac{1}{4}\left[ {\dfrac{{\sin 2t}}{2} + t} \right] + C
sin2t=2sintcost\sin 2t = 2\sin t\cos t ⟶ placing this in the above equation, we get:
14[2sintcost2+t]+C\Rightarrow \dfrac{1}{4}\left[ {\dfrac{{2\sin t\cos t}}{2} + t} \right] + C
On solving it further, we get:
14[sintcost+t]+C\Rightarrow \dfrac{1}{4}\left[ {\dfrac{{\not{2}\sin t\cos t}}{{\not{2}}} + t} \right] + C
On rewriting we get
14[sintcost+t]+C\Rightarrow \dfrac{1}{4}\left[ {\sin t\cos t + t} \right] + C
We know that cost=1sin2t\cos t = \sqrt {1 - {{\sin }^2}t}
Therefore, 14[sint1sin2t+t]+C\dfrac{1}{4}\left[ {\sin t\sqrt {1 - {{\sin }^2}t} + t} \right] + C
As we have taken x2=sint{x^2} = \sin t
Therefore, t=sin1(x2)t = {\sin ^{ - 1}}\left( {{x^2}} \right)
14[x21x4+sin1(x2)]+C\Rightarrow \dfrac{1}{4}\left[ {{x^2}\sqrt {1 - {x^4}} + {{\sin }^{ - 1}}\left( {{x^2}} \right)} \right] + C

The required answer is 14[x21x4+sin1(x2)]+C\dfrac{1}{4}\left[ {{x^2}\sqrt {1 - {x^4}} + {{\sin }^{ - 1}}\left( {{x^2}} \right)} \right] + C

Note: Integration is a type of calculus along with differentiation. Integration simply means to add up smaller parts of any area, volume, etc to give us the whole value. There are different types of integration methods to solve more complex multiplication and division questions like:
Integration by substitution
Integration by parts, etc