Solveeit Logo

Question

Question: How do you find the integral \[\int {(\sin x)(\cos x)dx} \] ?...

How do you find the integral (sinx)(cosx)dx\int {(\sin x)(\cos x)dx} ?

Explanation

Solution

Here, we need to find the value of (sinx)(cosx)dx\int {(\sin x)(\cos x)dx} . There are many ways to find the answer. One should know some trigonometry formulas such as sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 and cos2x=2cos2x1\cos 2x = 2{\cos ^2}x - 1 . To find integration of sin x cos x, we will use the formula sin2x=2sinxcosx\sin 2x = 2\sin x\cos x . By using this, and evaluating this, we will get the final output.

Complete step by step answer:
Given that, (sinx)(cosx)dx\int {(\sin x)(\cos x)dx} . We have many methods to solve this problem. We will use all of them one by one to solve them.The different methods used are as below:
First we will substitute u=sinxu = \sin x and applying this, we will get,
Let,
u=sinxu = \sin x
du=cosxdx\Rightarrow du = \cos xdx
For,
(sinx)(cosx)dx\int {(\sin x)(\cos x)dx}
Substitute the value of u and du in the above integral, we will get,
(u)(du)\Rightarrow \int {(u)(du)}
Removing the brackets, we will get,
udu\Rightarrow \int {udu}
u22+C\Rightarrow \dfrac{{{u^2}}}{2} + C where C is the constant of integration

Again, we will substitute the value of u, we will get,
(sinx)22+C\Rightarrow \dfrac{{{{(\sin x)}^2}}}{2} + C
sin2x2+C\Rightarrow \dfrac{{{{\sin }^2}x}}{2} + C
We will use the identity here as below:
{\sin ^2}x + {\cos ^2}x = 1$$$$ \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x
So applying this, we will get,
1cos2x2+C\Rightarrow \dfrac{{1 - {{\cos }^2}x}}{2} + C
12+cos2x2+C\Rightarrow \dfrac{1}{2} + \dfrac{{ - {{\cos }^2}x}}{2} + C
cos2x2+12+C\Rightarrow - \dfrac{{{{\cos }^2}x}}{2} + \dfrac{1}{2} + C
Here, 12\dfrac{1}{2} is absorbed into C as C represents any constant, we will get,
cos2x2+C\Rightarrow - \dfrac{{{{\cos }^2}x}}{2} + C

First we will substitute u=sinxu = \sin x and applying this, we will get,
Let,
u=cosxu = \cos x
du=sinxdx\Rightarrow du = - \sin xdx
For,
(sinx)(cosx)dx\int {(\sin x)(\cos x)dx}
(cosx)(sinx)dx\Rightarrow\int {(\cos x)(\sin x)dx}
Substitute the value of u and du in the above integral, we will get,
(u)(du)\Rightarrow \int {(u)( - du)}
Removing the brackets, we will get,
udu\Rightarrow - \int {udu}
u22+C\Rightarrow - \dfrac{{{u^2}}}{2} + C
Again, we will substitute the value of u, we will get,
(cosx)22+C\Rightarrow - \dfrac{{{{(\cos x)}^2}}}{2} + C
cos2x2+C\Rightarrow - \dfrac{{{{\cos }^2}x}}{2} + C

Here, we will use the formula of sin2x as below:
sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
sin2x2=sinxcosx\Rightarrow \dfrac{{\sin 2x}}{2} = \sin x\cos x
(sinx)(cosx)dx\Rightarrow \int {(\sin x)(\cos x)dx}
Substitute the value, we will get,
sin2x2dx\Rightarrow \int {\dfrac{{\sin 2x}}{2}dx}
12sin2xdx\Rightarrow \dfrac{1}{2}\int {\sin 2xdx}
Let, u=2xu = 2x
du=2dx\Rightarrow du = 2dx
dx=du2\Rightarrow dx = \dfrac{{du}}{2}

Now, we will substitute the values of 2x and dx, we will get,
12sinudu2\Rightarrow \dfrac{1}{2}\int {\sin u\dfrac{{du}}{2}}
14sinudu\Rightarrow \dfrac{1}{4}\int {\sin udu}
We know that, sinxdx=cosx+C\int {\sin xdx = - \cos x + C} and so applying this, we will get,
14(cosu)+C\Rightarrow \dfrac{1}{4}( - \cos u) + C
14cosu+C\Rightarrow - \dfrac{1}{4}\cos u + C
14cos2x+C\Rightarrow - \dfrac{1}{4}\cos 2x + C
We will use the formula cos2x=2cos2x1\cos 2x = 2{\cos ^2}x - 1 and so using this, we will get,
14(2cos2x1)+C\Rightarrow - \dfrac{1}{4}\left( {2{{\cos }^2}x - 1} \right) + C
Removing the brackets, we will get,
cos2x2+14+C\Rightarrow \dfrac{{ - {{\cos }^2}x}}{2} + \dfrac{1}{4} + C
On simplifying this, we will get,
cos2x2+C\Rightarrow \dfrac{{ - {{\cos }^2}x}}{2} + C

Hence, (sinx)(cosx)dx=cos2x2+C\int {(\sin x)(\cos x)dx} = \dfrac{{ - {{\cos }^2}x}}{2} + C.

Note: Integration is a method of adding or summing up the parts to find the whole. It is a reverse process of differentiation, where we reduce the functions into parts. The integral is calculated to find the functions which will describe the area, displacement, volume, that occurs due to a collection of small data, which cannot be measured singularly. Trigonometry is a branch of mathematics that studies relationships between side lengths and angles of triangles.