Solveeit Logo

Question

Question: How do you find the indefinite integral of \(\int{\dfrac{1}{\csc x}dx}\)?...

How do you find the indefinite integral of 1cscxdx\int{\dfrac{1}{\csc x}dx}?

Explanation

Solution

We first simplify the given expression of 1cscx\dfrac{1}{\csc x} to get 1cscx=sinx\dfrac{1}{\csc x}=\sin x. We take the function cosx\cos x and find its differential form as d(cosx)=sinxdxd\left( \cos x \right)=-\sin xdx. The integration gives us the solution of 1cscxdx\int{\dfrac{1}{\csc x}dx} as cosx+c-\cos x+c.

Complete step by step answer:
We first simplify the given expression where we get 1cscx=sinx\dfrac{1}{\csc x}=\sin x.
We now try to find the differentiated form of cosx\cos x.
We get ddx(cosx)=sinx\dfrac{d}{dx}\left( \cos x \right)=-\sin x.
We get the differential form of d(cosx)=sinxdxd\left( \cos x \right)=-\sin xdx.
Changing the sign, we get
d(cosx)=sinxdx d(cosx)=sinxdx d(cosx)=sinxdx \begin{aligned} & d\left( \cos x \right)=-\sin xdx \\\ & \Rightarrow -d\left( \cos x \right)=\sin xdx \\\ & \Rightarrow d\left( -\cos x \right)=\sin xdx \\\ \end{aligned}
Now we take the integration to get
sinxdx=d(cosx)+c sinxdx=cosx+c \begin{aligned} & \int{\sin xdx}=\int{d\left( -\cos x \right)}+c \\\ & \Rightarrow \int{\sin xdx}=-\cos x+c \\\ \end{aligned}
Therefore, the solution for 1cscxdx\int{\dfrac{1}{\csc x}dx} is cosx+c-\cos x+c.
Note: We can also solve the integration using the base change for ratio z=cosxz=\cos x. In that case the change in the variable goes as dz=sinxdxdz=-\sin xdx.
sinxdx =dz =z+c =cosx+c \begin{aligned} & \int{\sin xdx} \\\ & =-\int{dz} \\\ & =-z+c \\\ & =-\cos x+c \\\ \end{aligned}