Solveeit Logo

Question

Question: How do you find the indefinite integral of \[\int {\sec \dfrac{x}{2}dx} \]?...

How do you find the indefinite integral of secx2dx\int {\sec \dfrac{x}{2}dx} ?

Explanation

Solution

In solving the given question, we have to integrate the given function, first multiply and divide with tanx2+secx2\tan \dfrac{x}{2} + \sec \dfrac{x}{2}, then consider the denominator as a variable i.e.,uu, then differentiate both sides, and then further simplification we will get the required result.

Complete step by step solution:
Indefinite integral refers to an integral that does not have any upper and lower limit.
Given function is secx2dx\int {\sec \dfrac{x}{2}dx} ,
Now multiply and divide the given function with tanx2+secx2\tan \dfrac{x}{2} + \sec \dfrac{x}{2}, we get,
secx2(tanx2+secx2tanx2+secx2u)dx\Rightarrow \int {\sec \dfrac{x}{2}\left( {\dfrac{{\tan \dfrac{x}{2} + \sec \dfrac{x}{2}}}{{\tan \dfrac{x}{2} + \sec \dfrac{x}{2}u}}} \right)dx},
Now simplifying by multiplying we get,
secx2tanx2+sec2x2tanx2+secx2udx\Rightarrow \int {\dfrac{{\sec \dfrac{x}{2}\tan \dfrac{x}{2} + {{\sec }^2}\dfrac{x}{2}}}{{\tan \dfrac{x}{2} + \sec \dfrac{x}{2}u}}dx},
Now let us consider tanx2+secx2=u\tan \dfrac{x}{2} + \sec \dfrac{x}{2} = u,
Now differentiate both sides we get,
ddxu=ddx(tanx2+secx2)\Rightarrow \dfrac{d}{{dx}}u = \dfrac{d}{{dx}}\left( {\tan \dfrac{x}{2} + \sec \dfrac{x}{2}} \right),
Now distributing the differentiation, we get,
dudx=ddxtanx2+ddxsecx2\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\tan \dfrac{x}{2} + \dfrac{d}{{dx}}\sec \dfrac{x}{2},
Now applying derivative formulas we get,
dudx=12sec2x2+12secx2tanx2\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{2}{\sec ^2}\dfrac{x}{2} + \dfrac{1}{2}\sec \dfrac{x}{2}\tan \dfrac{x}{2},
Now take dxdxto the right hand side we get,
2du=(sec2x2+secx2tanx2)dx\Rightarrow 2du = \left( {{{\sec }^2}\dfrac{x}{2} + \sec \dfrac{x}{2}\tan \dfrac{x}{2}} \right)dx,
Now substituting the values we get,
2duu\Rightarrow \int {\dfrac{{2du}}{u}},
Now using the integration formula 1xdx=lnx+c\int {\dfrac{1}{x}dx} = \ln x + c, we get,
2duu=2lnu\Rightarrow \int {\dfrac{{2du}}{u}} = 2\ln \left| u \right|,
We know that u=tanx2+secx2u = \tan \dfrac{x}{2} + \sec \dfrac{x}{2}, now substituting the value in the above we get,
secx2=2lntanx2+secx2+C\Rightarrow \int {\sec \dfrac{x}{2}} = 2\ln \left| {\tan \dfrac{x}{2} + \sec \dfrac{x}{2}} \right| + C.
So, the integral for the given function is 2lntanx2+secx2+C2\ln \left| {\tan \dfrac{x}{2} + \sec \dfrac{x}{2}} \right| + C.

Final Answer:
\therefore The integral for the given function secx2dx\int {\sec \dfrac{x}{2}dx} will be equal to 2lntanx2+secx2+C2\ln \left| {\tan \dfrac{x}{2} + \sec \dfrac{x}{2}} \right| + C.

Note:
An indefinite is an integral that does not contain the upper and lower limit. Indefinite integral is also known as anti-derivative or Prime integral. Indefinite integral of a function f is generally a differentiable function F whose derivative is equal to the original function f. It is represented as,
f(x)dx=F(x)+C\int {f\left( x \right)dx} = F\left( x \right) + C,
Some of the important formulas that we use while solving integration problems are given below:
dx=x+c\int {dx = x + c} ,
adx=ax+c\int {adx = ax + c} ,
xndx=xn+1n+1+c\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c,
1xdx=lnx+c\int {\dfrac{1}{x}dx} = \ln x + c,
exdx=ex+c\int {{e^x}dx = {e^x} + c} ,
axdx=axlna+c\int {{a^x}dx = \dfrac{{{a^x}}}{{\ln a}} + c} ,
sinxdx=cosx+c\int {\sin xdx = - \cos x + c} ,
cosxdx=sinx+c\int {\cos xdx = \sin x + c} ,
sec2xdx=tanx+c\int {{{\sec }^2}xdx = \tan x + c} ,
csc2xdx=cotx+C\int {{{\csc }^2}xdx = - \cot x + C} ,
secxtanxdx=secx+C\int {\sec x\tan xdx = \sec x + C} ,
cscxcotxdx=cscx+C\int {\csc x\cot xdx = - \csc x + C} ,
11x2dx=sin1x+c\int {\dfrac{1}{{\sqrt {1 - {x^2}} }}dx = {{\sin }^{ - 1}}x + c} ,
11+x2dx=tan1x+c\int {\dfrac{1}{{1 + {x^2}}}dx = {{\tan }^{ - 1}}x + c} .