Solveeit Logo

Question

Question: How do you find the fourth roots of \( - 8 + 8\sqrt {3i} \)?...

How do you find the fourth roots of 8+83i- 8 + 8\sqrt {3i}?

Explanation

Solution

First we know that complex number, the complex numbers are 1,1,i,i1, - 1,i, - i. The complex number denoted by zz. If you express your complex number in polar form as r(cosθ+isinθ)r(\cos \theta + i\sin \theta ).
We use the nth{n^{th}} root theorem.
zn=rn[cos(α)+isin(α)]\sqrt[n]{z} = \sqrt[n]{r}\left[ {\cos (\alpha ) + i\sin (\alpha )} \right]
This is an extension of DeMoivre’s theorem.
Where, α=θ+360kn\alpha = \dfrac{{\theta + 360k}}{n} ,k=0,1,2,3....,n1k = 0,1,2,3....,n - 1

Complete step-by-step solution:
The first thing we should recognize is if we want the 4th4th roots, nn will be 44.
n=4n = 4
Next we need to write this complex number in complex form. So we need to find rr and θ\theta
Let a+iba + ib
Let z=8+8i3z = - 8 + 8i\sqrt 3
a=8a = - 8 and b=83b = 8\sqrt 3
Now rr formula is, r=a2+b2r = \sqrt {{a^2} + {b^2}} ,
Now apply the complex number in the rr equation, we get
r=(8)2+(83)2\Rightarrow r = \sqrt {{{( - 8)}^2} + {{(8\sqrt 3 )}^2}}
Square on two terms
r=64+192\Rightarrow r = \sqrt {64 + 192}
Now add the terms,
r=256=16\Rightarrow r = \sqrt {256} = 16
Next we need to find θ\theta . But before we do that let’s recognize that if aa is negative and bb is positive, θ\theta will be in this second quadrant. And we know that tangent theta is equal to ba\dfrac{b}{a}
tanθ=ba\Rightarrow \tan \theta = \dfrac{b}{a}
Now substitute aa and bb in tangent
tanθ=3=31\Rightarrow \tan \theta = \dfrac{{\not{8}\sqrt 3 }}{{ - \not{8}}} = \dfrac{{\sqrt 3 }}{{ - 1}}
Then the theta value is 120{120^ \circ }
θ=120\Rightarrow \theta = {120^ \circ }
Now we find α\alpha value,
α=θ+360kn\Rightarrow \alpha = \dfrac{{\theta + {{360}^ \circ }k}}{n}, k=0,1,2,3....,n1k = 0,1,2,3....,n - 1
α=120+360k4\Rightarrow \alpha = \dfrac{{{{120}^ \circ } + {{360}^ \circ }k}}{4}
Let’s see if we can simplify this expression, before we 120120 divide by 44 would be 3030degrees and 360k360k divided by 4 would be 9090degrees.
α=30+90k\alpha = {30^ \circ } + {90^ \circ }k
Now we have,
n=4n = 4
r=16r = 16
α=30+90k\alpha = {30^ \circ } + {90^ \circ }k
k=0,1,2,3.k = 0,1,2,3.
If k=0k = 0, then α=30+90(0)=30\alpha = {30^ \circ } + {90^ \circ }(0) = {30^ \circ }
If k=1k = 1, then α=30+90(1)=120\alpha = {30^ \circ } + {90^ \circ }(1) = {120^ \circ }
If k=2k = 2, then α=30+90(2)=210\alpha = {30^ \circ } + {90^ \circ }(2) = {210^ \circ }
If k=3k = 3, then α=30+90(3)=300\alpha = {30^ \circ } + {90^ \circ }(3) = {300^ \circ }
Now these values are substitute in the equation of zn=rn[cos(α)+isin(α)]\sqrt[n]{z} = \sqrt[n]{r}\left[ {\cos (\alpha ) + i\sin (\alpha )} \right]
If θ=30\theta = {30^ \circ }
z4=164(cos30+isin30)\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {30^ \circ } + i\sin {30^ \circ })
2(32+i(12))=3+i\Rightarrow 2\left( {\dfrac{{\sqrt 3 }}{2} + i\left( {\dfrac{1}{2}} \right)} \right) = \sqrt 3 + i
If θ=120\theta = {120^ \circ }
z4=164(cos120+isin120)\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {120^ \circ } + i\sin {120^ \circ })
2(12+i(32))=1+i3\Rightarrow 2\left( {\dfrac{{ - 1}}{2} + i\left( {\dfrac{{\sqrt 3 }}{2}} \right)} \right) = - 1 + i\sqrt 3
If θ=210\theta = {210^ \circ }
z4=164(cos210+isin210)\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {210^ \circ } + i\sin {210^ \circ })
2(32+i(12))=3i\Rightarrow 2\left( {\dfrac{{ - \sqrt 3 }}{2} + i\left( {\dfrac{{ - 1}}{2}} \right)} \right) = - \sqrt 3 - i
If θ=300\theta = {300^ \circ }
z4=164(cos300+isin300)\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {300^ \circ } + i\sin {300^ \circ })
2(12+i(32))=1i3\Rightarrow 2\left( {\dfrac{1}{2} + i\left( {\dfrac{{ - \sqrt 3 }}{2}} \right)} \right) = 1 - i\sqrt 3

Note: The applet below shows the complex 4th4^{th} roots of a complex number. DeMoivre’s Theorem shows that there are always fourth roots, spaced evenly around a circle. The segment of zz indicates the given number zz, and the segments of fourth roots z0,z1,z2{z_0},{z_1},{z_2} and z3{z_3}.