Solveeit Logo

Question

Question: How do you find the first five terms of the Taylor series for \(f\left( x \right)={{x}^{8}}+{{x}^{4}...

How do you find the first five terms of the Taylor series for f(x)=x8+x4+3f\left( x \right)={{x}^{8}}+{{x}^{4}}+3 at x=1x=1 ?

Explanation

Solution

Taylor series is given as f(x)+f(x)1!x+f(x)2!x2+f(x)3!x3+........f\left( x \right)+\dfrac{{f}'\left( x \right)}{1!}x+\dfrac{{f}''\left( x \right)}{2!}{{x}^{2}}+\dfrac{{f}'''\left( x \right)}{3!}{{x}^{3}}+........\infty where, f(x),f(x),f(x){f}'\left( x \right),{f}''\left( x \right),{f}'''\left( x \right) are the first, second and third derivatives of the functionf(x)f\left( x \right). Here, 1!,2!,3!1!,2!,3! are the factorials of 1,2 and 3 respectively. Therefore, we shall calculate a few terms and then observe the pattern occurring to find our final solution.

Complete step by step solution:
We have to find the first five terms of this series for x=1x=1.
Let us differentiate the function f(x)=x8+x4+3f\left( x \right)={{x}^{8}}+{{x}^{4}}+3 now. We shall use the property of differentiation given as ddxxn=nxn1\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} several times to differentiate the function.
f(x)=ddx(x8+x4+3)\Rightarrow {f}'\left( x \right)=\dfrac{d}{dx}\left( {{x}^{8}}+{{x}^{4}}+3 \right)
f(x)=8x7+4x3\Rightarrow {f}'\left( x \right)=8{{x}^{7}}+4{{x}^{3}} …………….. (1)
Again differentiating the function with respect to x, we get:
f(x)=ddxf(x)\Rightarrow {f}''\left( x \right)=\dfrac{d}{dx}{f}'\left( x \right)
f(x)=ddx(8x7+4x3) f(x)=56x6+12x2 \begin{aligned} & \Rightarrow {f}''\left( x \right)=\dfrac{d}{dx}\left( 8{{x}^{7}}+4{{x}^{3}} \right) \\\ & \Rightarrow {f}''\left( x \right)=56{{x}^{6}}+12{{x}^{2}} \\\ \end{aligned}
f(x)=56x6+12x2\Rightarrow {f}''\left( x \right)=56{{x}^{6}}+12{{x}^{2}} …………………… (2)
Third time differentiating the function with respect to x, we get
ddxf(x)=ddx(56x6+12x2) f(x)=ddx(56x6+12x2) \begin{aligned} & \Rightarrow \dfrac{d}{dx}{f}''\left( x \right)=\dfrac{d}{dx}\left( 56{{x}^{6}}+12{{x}^{2}} \right) \\\ & \Rightarrow {f}'''\left( x \right)=\dfrac{d}{dx}\left( 56{{x}^{6}}+12{{x}^{2}} \right) \\\ \end{aligned}
f(x)=336x5+24x\Rightarrow {f}'''\left( x \right)=336{{x}^{5}}+24x
f(x)=336x5+24x\Rightarrow {f}'''\left( x \right)=336{{x}^{5}}+24x ………………. (3)
Fourth time differentiating the function with respect to x, we get
ddxf(x)=ddx(336x5+24x) f(x)=ddx(336x5+24x) \begin{aligned} & \Rightarrow \dfrac{d}{dx}{f}'''\left( x \right)=\dfrac{d}{dx}\left( 336{{x}^{5}}+24x \right) \\\ & \Rightarrow f''''\left( x \right)=\dfrac{d}{dx}\left( 336{{x}^{5}}+24x \right) \\\ \end{aligned}
f(x)=1680x4+24\Rightarrow f''''\left( x \right)=1680{{x}^{4}}+24 ………………. (4)
From (1), (2), (3) and (4), we substitute the value of x equals to 1 to calculate the value of the first, second and third derivative of function at point x=1x=1.
f(1)=8(1)7+4(1)3\Rightarrow {f}'\left( 1 \right)=8{{\left( 1 \right)}^{7}}+4{{\left( 1 \right)}^{3}}
f(1)=12\Rightarrow {f}'\left( 1 \right)=12
Now, f(1)=56(1)6+12(1)2{f}''\left( 1 \right)=56{{\left( 1 \right)}^{6}}+12{{\left( 1 \right)}^{2}}
f(1)=68\Rightarrow {f}''\left( 1 \right)=68
And, f(1)=336(1)5+24(1){f}'''\left( 1 \right)=336{{\left( 1 \right)}^{5}}+24\left( 1 \right)
f(1)=360\Rightarrow {f}'''\left( 1 \right)=360
Also, f(1)=1680(1)4+24f''''\left( 1 \right)=1680{{\left( 1 \right)}^{4}}+24
f(x)=1704\Rightarrow f''''\left( x \right)=1704
Also, f(1)=18+14+3f\left( 1 \right)={{1}^{8}}+{{1}^{4}}+3
f(1)=55\Rightarrow f\left( 1 \right)=55
Hence, the value of the first, second, third and fourth derivative of function at point x=1x=1is 12, 68, 360 and 1704 respectively.
The Taylor series is given as f(x)+f(x)1!x+f(x)2!x2+f(x)3!x3+........f\left( x \right)+\dfrac{{f}'\left( x \right)}{1!}x+\dfrac{{f}''\left( x \right)}{2!}{{x}^{2}}+\dfrac{{f}'''\left( x \right)}{3!}{{x}^{3}}+........\infty .
Now, we shall calculate the first five terms of this series at x=1x=1 one-by-one.
First term: f(1)=55f\left( 1 \right)=55
Second term: f(x)1!x=f(1)1!1\dfrac{{f}'\left( x \right)}{1!}x=\dfrac{{f}'\left( 1 \right)}{1!}1
f(1)1!1=12\Rightarrow \dfrac{{f}'\left( 1 \right)}{1!}1=12
Third term: f(x)2!x2=f(1)2!12\dfrac{{f}''\left( x \right)}{2!}{{x}^{2}}=\dfrac{{f}''\left( 1 \right)}{2!}{{1}^{2}}
f(1)2!12=682=34\Rightarrow \dfrac{{f}''\left( 1 \right)}{2!}{{1}^{2}}=\dfrac{68}{2}=34
Fourth term: f(x)3!x3=f(1)3!13\dfrac{{f}'''\left( x \right)}{3!}{{x}^{3}}=\dfrac{{f}'''\left( 1 \right)}{3!}{{1}^{3}}
f(1)3!13=3606=60\Rightarrow \dfrac{{f}'''\left( 1 \right)}{3!}{{1}^{3}}=\dfrac{360}{6}=60
Fifth term: f(x)4!x4=f(1)4!14\dfrac{f''''\left( x \right)}{4!}{{x}^{4}}=\dfrac{f''''\left( 1 \right)}{4!}{{1}^{4}}
f(1)4!14=170424=71\Rightarrow \dfrac{f''''\left( 1 \right)}{4!}{{1}^{4}}=\dfrac{1704}{24}=71
Therefore, the first five terms of the Taylor series for f(x)=x8+x4+3f\left( x \right)={{x}^{8}}+{{x}^{4}}+3 at x=1x=1 are 55, 12, 34, 60, 71.

Note:
Maclaurin series is a special case of Taylor series centered at x=0x=0. It is given as f(0)+f(0)1!x+f(0)2!x2+f(0)3!x3+........f\left( 0 \right)+\dfrac{{f}'\left( 0 \right)}{1!}x+\dfrac{{f}''\left( 0 \right)}{2!}{{x}^{2}}+\dfrac{{f}'''\left( 0 \right)}{3!}{{x}^{3}}+........\infty where, f(0),f(0),f(0){f}'\left( 0 \right),{f}''\left( 0 \right),{f}'''\left( 0 \right) are the first, second and third derivatives of the functionf(x)f\left( x \right) at x=0x=0. Likewise, 1!,2!,3!1!,2!,3! are the factorials of 1,2 and 3 respectively.