Solveeit Logo

Question

Question: How do you find the exact values of \(\tan \dfrac{{3\pi }}{8}\) using the half-angle formula?...

How do you find the exact values of tan3π8\tan \dfrac{{3\pi }}{8} using the half-angle formula?

Explanation

Solution

In the above question, we were asked to find the exact value of tan3π8\tan \dfrac{{3\pi }}{8} using the half-angle formula. We will use the formula tan(θ2)=1cosθsinθ\tan \left( {\dfrac{\theta }{2}} \right) = \dfrac{{1 - \cos \theta }}{{\sin \theta }} , this is the half-angle formula for tan\tan . We will substitute θ2\dfrac{\theta }{2} with 3π8\dfrac{{3\pi }}{8}. Substituting the value then we will operate the equation and simplify accordingly to find the required value of our problem. So, let’s see how we solve the problem.

Complete step by step answer:
The half-angle formula for tangent can be written as:
tan(θ2)=1cosθsinθ\tan \left( {\dfrac{\theta }{2}} \right) = \dfrac{{1 - \cos \theta }}{{\sin \theta }}
We will use this formula to solve the above problem.
Let us take, θ=3π4\theta = \dfrac{{3\pi }}{4}.
Now, substituting this value in the above formula, we get,
tan(3π8)=1cos(3π4)sin3π4\tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{1 - \cos \left( {\dfrac{{3\pi }}{4}} \right)}}{{\sin \dfrac{{3\pi }}{4}}}
We know, value of cos3π4\cos \dfrac{{3\pi }}{4} is 12 - \dfrac{1}{{\sqrt 2 }} and sin3π4\sin \dfrac{{3\pi }}{4} is 12\dfrac{1}{{\sqrt 2 }}.

Now, using these values in the above equation, we get,
So, tan(3π8)=1(12)(12)\tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{1 - \left( { - \dfrac{1}{{\sqrt 2 }}} \right)}}{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}}
tan(3π8)=1+1212\Rightarrow \tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{1 + \dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{{\sqrt 2 }}}}
Taking LCM in the numerator, we get,
tan(3π8)=2+1212\Rightarrow \tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{\dfrac{{\sqrt 2 + 1}}{{\sqrt 2 }}}}{{\dfrac{1}{{\sqrt 2 }}}}
Now, converting the fraction in its simplest form, we get,
tan(3π8)=2+11\Rightarrow \tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{\sqrt 2 + 1}}{1}

Therefore, the value of tan3π8\tan \dfrac{{3\pi }}{8} by the half-angle formula is 2+1\sqrt 2 + 1.

Note: In the above solution, we have used a half-angle formula for the tangent.There is a half-angle formula for sin\sin and cos\cos as well. These are,
sin(θ2)=±1cosθ2\sin \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{2}} and cos(θ2)=±1+cosθ2\cos \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 + \cos \theta }}{2}}
Also, cos(2θ)=cos2θsin2θ=12sin2θ=2cos2θ1\cos \left( {2\theta } \right) = {\cos ^2}\theta - {\sin ^2}\theta = 1 - 2{\sin ^2}\theta = 2{\cos ^2}\theta - 1, sin(2θ)=2sinθcosθ\sin \left( {2\theta } \right) = 2\sin \theta \cos \theta and tan(2θ)=2tanθ1tan2θ\tan \left( {2\theta } \right) = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}. The parent formulas for the half angle formulas are the formulas with 2θ2\theta . In these formulas, substituting 2θ2\theta by θ\theta and θ\theta by θ2\dfrac{\theta }{2} gives the resulting half angle formulas. All these formulas are very useful and sometimes they are converted according to the problem statement and are used accordingly.