Solveeit Logo

Question

Question: How do you find the exact values of \[\tan {67.5^ \circ }\] using the half angle formula?...

How do you find the exact values of tan67.5\tan {67.5^ \circ } using the half angle formula?

Explanation

Solution

We use the half angle formulas for solving this problem. Using this formula, we can solve many other problems. The formulas are, sin(θ2)=±1cosθ2\sin \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{2}} and cos(θ2)=±1+cosθ2\cos \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 + \cos \theta }}{2}} . And we will also discuss trigonometric ratios of angles like (90±θ)\left( {{{90}^ \circ } \pm \theta } \right) in this problem. We will also use some known trigonometric ratios like sine and cosine values of 45{45^ \circ } .

Complete step by step answer:
Tangent value is positive in the first quadrant, so, tan67.5\tan {67.5^ \circ } is a positive value. So we should get a positive answer.
Firstly, the angle 67.5{67.5^ \circ } is half of the angle 135{135^ \circ } .
And, we can write as, tan67.5=tan(1352)\tan {67.5^ \circ } = \tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right)
Now, we also know that, sin(θ2)=±1cosθ2\sin \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{2}} and also cos(θ2)=±1+cosθ2\cos \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 + \cos \theta }}{2}}
So, dividing these both, we get,
sin(θ2)cos(θ2)=tan(θ2)=±1cosθ1+cosθ\dfrac{{\sin \left( {\dfrac{\theta }{2}} \right)}}{{\cos \left( {\dfrac{\theta }{2}} \right)}} = \tan \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}}
To rationalize the denominator, we multiply both numerator and denominator by its conjugate
(For a+b\sqrt {a + b} the conjugate is ab\sqrt {a - b} )
On rationalizing, we get, tan(θ2)=±1cosθ1+cosθ1cosθ1cosθ\tan \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \dfrac{{\sqrt {1 - \cos \theta } }}{{\sqrt {1 - \cos \theta } }}
tan(θ2)=1cosθsinθ\Rightarrow \tan \left( {\dfrac{\theta }{2}} \right) = \dfrac{{1 - \cos \theta }}{{\sin \theta }}
Here, we get both positive and positive values for this. But for our convenience, we take only positive values.
(Because, 1cos2θ=sin2θ1 - {\cos ^2}\theta = {\sin ^2}\theta )
So, substituting θ=135\theta = {135^ \circ }
tan(1352)=1cos135sin135\Rightarrow \tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right) = \dfrac{{1 - \cos {{135}^ \circ }}}{{\sin {{135}^ \circ }}}
And, 135=90+45{135^ \circ } = {90^ \circ } + {45^ \circ }
So, cos135=cos(90+45)\cos {135^ \circ } = \cos ({90^ \circ } + {45^ \circ })
cos135=sin45\Rightarrow \cos {135^ \circ } = - \sin {45^ \circ }
(Because cos(90+θ)=sinθ\cos ({90^ \circ } + \theta ) = - \sin \theta ; as cosine is negative in second quadrant and (90+θ)\left( {{{90}^ \circ } + \theta } \right) belongs to second quadrant)
So, cos135=12\cos {135^ \circ } = - \dfrac{1}{{\sqrt 2 }} (as sin45=12\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }} )
And \sin {135^ \circ } = \sin ({90^ \circ } + {45^ \circ }) = \cos {45^ \circ }$$$$ = \dfrac{1}{{\sqrt 2 }} (as cos45=12\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }} )
(Because sin(90+θ)=cosθ\sin ({90^ \circ } + \theta ) = \cos \theta ; as sine is positive in second quadrant and (90+θ)\left( {{{90}^ \circ } + \theta } \right) belongs to second quadrant)
So,
tan(1352)=1(12)12\Rightarrow \tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right) = \dfrac{{1 - \left( { - \dfrac{1}{{\sqrt 2 }}} \right)}}{{\dfrac{1}{{\sqrt 2 }}}}
tan(1352)=1+1212\Rightarrow \tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right) = \dfrac{{1 + \dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{{\sqrt 2 }}}}
So finally, we get, tan(1352)=2+1\tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right) = \sqrt 2 + 1
tan(67.5)=2+1\Rightarrow \tan \left( {{{67.5}^ \circ }} \right) = \sqrt 2 + 1
We know that the value of 2\sqrt 2 is equal to the 1.4141.414 .
So, tan(67.5)=1.414+1=2.414\tan ({67.5^ \circ }) = 1.414 + 1 = 2.414
And this is the required value.

Note: To rationalize the denominator, we need to multiply both numerator and denominator by its conjugate and here the conjugate is 1cosθ\sqrt {1 - \cos \theta } . But instead, we can also multiply both numerator and denominator by 1+cosθ\sqrt {1 + \cos \theta } and we can get another value which is also equal to the first.
So, tan(θ2)=1cosθ1+cosθ1+cosθ1+cosθ\tan \left( {\dfrac{\theta }{2}} \right) = \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \dfrac{{\sqrt {1 + \cos \theta } }}{{\sqrt {1 + \cos \theta } }}
So, that implies as tan(θ2)=sinθ1+cosθ\tan \left( {\dfrac{\theta }{2}} \right) = \dfrac{{\sin \theta }}{{1 + \cos \theta }} .