Solveeit Logo

Question

Question: How do you find the exact values of \(\tan 112.5^\circ \) using the half angle formula?...

How do you find the exact values of tan112.5\tan 112.5^\circ using the half angle formula?

Explanation

Solution

Here, in this question, we need to find the exact value of tan112.5\tan 112.5^\circ using the half angle identity. In order to use the half angle identity, we will first rewrite the given value as the double of the given angle and then, simplify in such a way that we get to use half angle identity and find the answer.

Formula used: tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}
sin2(x2)=12(1cosx){\sin ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{1}{2}(1 - \cos x)
cos2(x2)=12(1+cosx){\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{1}{2}(1 + \cos x)
tan2t=2t1t2  \tan 2t = \dfrac{{2t}}{{1 - {t^2}}}\;

Complete step-by-step solution:
The given value is tan165\tan 165^\circ , we need to find its exact value by using the half angle identity.
This angle lies in the 2nd Quadrant.
First, we can also write tan(112.5)=tan(2252)\tan \left( {112.5} \right) = \tan (\dfrac{{225}}{2})
Expanding the function using tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}} ,
tan(2252)=sin(2252)cos(2252)\tan (\dfrac{{225}}{2}) = \dfrac{{\sin (\dfrac{{225}}{2})}}{{\cos (\dfrac{{225}}{2})}}
Taking square root and squaring the terms at the same time,
= [sin(2252)cos(2252)]2= \sqrt {{\text{ }}{{\left[ {\dfrac{{\sin \left( {\dfrac{{225}}{2}} \right)}}{{\cos \left( {\dfrac{{225}}{2}} \right)}}} \right]}^2}}
Square is been multiplied inside,
= sin2(2252)cos2(2252)= \sqrt {{\text{ }}\dfrac{{{{\sin }^2}\left( {\dfrac{{225}}{2}} \right)}}{{{{\cos }^2}\left( {\dfrac{{225}}{2}} \right)}}}
We say it's negative because the value of tan is always negative in the second quadrant!
= sin2(2252)cos2(2252)= - \sqrt {{\text{ }}\dfrac{{{{\sin }^2}\left( {\dfrac{{225}}{2}} \right)}}{{{{\cos }^2}\left( {\dfrac{{225}}{2}} \right)}}}
Next, we will use the half angle formula:
Since we know that,
sin2(x2)=12(1cosx){\sin ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{1}{2}(1 - \cos x)
cos2(x2)=12(1+cosx){\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{1}{2}(1 + \cos x)
We will use these trigonometric functions in here,
tan(112.5)= sin2(2252)cos2(2252)\tan (112.5) = - \sqrt {{\text{ }}\dfrac{{{{\sin }^2}\left( {\dfrac{{225}}{2}} \right)}}{{{{\cos }^2}\left( {\dfrac{{225}}{2}} \right)}}}
 sin2(2252)cos2(2252)= 12(1cos225)12(1+cos225)- \sqrt {{\text{ }}\dfrac{{{{\sin }^2}\left( {\dfrac{{225}}{2}} \right)}}{{{{\cos }^2}\left( {\dfrac{{225}}{2}} \right)}}} = - \sqrt {{\text{ }}\dfrac{{\dfrac{1}{2}\left( {1 - \cos 225} \right)}}{{\dfrac{1}{2}\left( {1 + \cos 225} \right)}}}
Cancelling the 22 on both sides,
= (1cos225)(1+cos225)= - \sqrt {{\text{ }}\dfrac{{\left( {1 - \cos 225} \right)}}{{\left( {1 + \cos 225} \right)}}}
Now, we can rewrite 225=180+45225 = 180 + 45 which changes into cos(225)=cos(180+45)\cos (225) = \cos (180 + 45)
We also know cos(180+x)=cosx\cos (180 + x) = - \cos x
cos(180+45)=cos(45)\cos (180 + 45) = - \cos \left( {45} \right)
cos45- \cos 45 = 1(cos45)1+(cos45)= - \sqrt {{\text{ }}\dfrac{{1 - ( - \cos 45)}}{{1 + ( - \cos 45)}}}
= 1+cos451cos45= - \sqrt {{\text{ }}\dfrac{{1 + \cos 45}}{{1 - \cos 45}}}
Substituting the value of cos45\cos 45 that is 11 ,
= 1+22122= - \sqrt {{\text{ }}\dfrac{{1 + \dfrac{{\sqrt 2 }}{2}}}{{1 - \dfrac{{\sqrt 2 }}{2}}}}
Now, we will take LCM
= 2+22222= - \sqrt {{\text{ }}\dfrac{{\dfrac{{2 + \sqrt 2 }}{2}}}{{\dfrac{{2 - \sqrt 2 }}{2}}}}
= 2+222= - \sqrt {{\text{ }}\dfrac{{2 + \sqrt 2 }}{{2 - \sqrt 2 }}}
Now we have to Rationalize this,
= 2+222×2+22+2= - \sqrt {{\text{ }}\dfrac{{2 + \sqrt 2 }}{{2 - \sqrt 2 }} \times \dfrac{{2 + \sqrt 2 }}{{2 + \sqrt 2 }}}
We know that a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b) using this formula,
= (2+2)222(2)2= - \sqrt {{\text{ }}\dfrac{{{{\left( {2 + \sqrt 2 } \right)}^2}}}{{{2^2} - {{\left( {\sqrt 2 } \right)}^2}}}}
= (2+2)242= - \sqrt {{\text{ }}\dfrac{{{{\left( {2 + \sqrt 2 } \right)}^2}}}{{4 - 2}}}
=(2+2)22= - \dfrac{{\sqrt {{{\left( {2 + \sqrt 2 } \right)}^2}} }}{{\sqrt 2 }}
=2+22= - \dfrac{{2 + \sqrt 2 }}{{\sqrt 2 }}
Taking the common number out, we get
=2(2+1)2= - \dfrac{{\sqrt 2 \left( {\sqrt 2 + 1} \right)}}{{\sqrt 2 }}
=(2+1)= - \left( {\sqrt 2 + 1} \right)
(1+2)- (1 + \sqrt 2 )

Therefore, the exact value of tan112.5\tan 112.5^\circ is (1+2) - (1 + \sqrt 2 ).

Note: Alternative method:
There is another method to find the exact value of tan112.5\tan 112.5^\circ .
First, let tan 112.5 = tan t\tan {\text{ }}112.5{\text{ }} = {\text{ }}\tan {\text{ }}t
Now, we can rewrite it as,
tan 2t = tan 225\tan {\text{ }}2t{\text{ }} = {\text{ }}\tan {\text{ }}225
Now, we can rewrite 225=45+180225 = 45 + 180 which changes into tan(225)=tan(45+180)\tan (225) = \tan (45 + 180)
tan(45 + 180)=tan45=1\tan \left( {45{\text{ }} + {\text{ }}180} \right) = \tan 45 = 1
Now, we will use this trigonometric identity, tan2t=2t1t2  \tan 2t = \dfrac{{2t}}{{1 - {t^2}}}\;
tan225=tan2t=tan45=1\tan {\text{225}} = \tan {\text{2}}t = \tan 45 = 1
1=2t1t2  1 = \dfrac{{2t}}{{1 - {t^2}}}\;
Cross multiplying this,
1t2=2t1 - {t^2} = 2t
t2+2t1=0{t^2} + 2t - 1 = 0
Now we get this quadratic equation,
Applying t2+2t1=0{t^2} + 2t - 1 = 0 in  - b \pmb2 - 4ac2a\dfrac{{{\text{ - b \pm }}\sqrt {{{\text{b}}^{\text{2}}}{\text{ - 4ac}}} }}{{{\text{2a}}}} ,
x=2±224(1)(1)2(1)x = \dfrac{{ - 2 \pm \sqrt {{2^2} - 4(1)( - 1)} }}{{2(1)}}
Simplifying the numerator,
x = 2±4+42{\text{x = }}\dfrac{{ - 2 \pm \sqrt {4 + 4} }}{2}
x = 2±82{\text{x = }}\dfrac{{ - 2 \pm \sqrt 8 }}{2}
Simplifying the numerator, we get,
x = 2±222{\text{x = }}\dfrac{{ - 2 \pm 2\sqrt 2 }}{2}
x = 2+222,2222{\text{x = }}\dfrac{{ - 2 + 2\sqrt 2 }}{2},\dfrac{{ - 2 - 2\sqrt 2 }}{2}
x = 1+2,12{\text{x = }} - 1 + \sqrt 2 , - 1 - \sqrt 2
Since tan(112.5 )\tan (112.5{\text{ }}^\circ ) is in Quadrant II, the tan\tan value is negative.
Therefore, the value will be negative.
Therefore, the value of tan(112.5 )\tan (112.5{\text{ }}^\circ ) is (1+2) - (1 + \sqrt 2 ) .