Question
Question: How do you find the exact values of \[\sin 15\] degrees using the half-angle formula?...
How do you find the exact values of sin15 degrees using the half-angle formula?
Solution
Here they have asked to find the exact value of a sine function by using half angle formula. We can make use of the half angle formula given by: sin(2x)=21−cosx . As the 15 degrees is half of 30 degrees, by putting x=30∘ in the given half angle formula we can simplify the expression for the required answer.
Complete step by step answer:
In the given question they have asked for the exact value of sine function using half angle identities. So for that we can make use of the half angle formula for sine function given by: sin(2x)=21−cosx.
As the 15 degrees is half of 30 degrees, by putting x=30∘ in the given half-angle formula we can simplify the expression.
Therefore, we get
sin(230∘)=21−cos30∘
From trigonometric ratio for standard functions, we know that cos30∘=23 , now by substituting this value in the above expression, we get
⇒sin(230∘)=21−23
Taking L.C.M. for the right hand side numerator, we get
⇒sin(230∘)=222−3
On simplification,
⇒sin(230∘)=42−3
⇒sin(230∘)=22−3
In the above step we have nested root which is root inside root, we can keep this as the answer, or else if you want to simplify further we can do as follows.
To remove nested root, multiply both the numerator and the denominator inside the square root by 2, we get
⇒sin(230∘)=42−3.22
⇒sin(230∘)=84−23
⇒sin(230∘)=84−23
The above step can be written as
⇒sin(230∘)=22.2(3−1)2
Square and the square root get cancel each other in the above step, we get
⇒sin(230∘)=(2(3−1)).21
⇒sin(230∘)=22(3−1)
Now by rationalizing the denominator, that is multiply both numerators and denominator by 2, we get
⇒sin(230∘)=42(3−1)
⇒sin(230∘)=46−2 , this is the required answer without the nested root.
If we want to keep this answer in a decimal form we can easily calculate using the calculator and find the value in decimal form.
⇒sin(230∘)=46−2=0.258.
Note: This problem can also be solved in a simple way by using the identity sin(A−B)=sinAcosB−sinBcosA . Now, sin15 degrees can be written as sin(45−30) degrees.
Therefore now substituting this in the given formula we can have sin(45−30)=sin45cos30−sin30cos45 , now by making use of standard value of the functions, we get ⇒sin(45−30)=21.23−2121.
On simplification,
⇒sin(45−30)=46−2=0.258.