Solveeit Logo

Question

Question: How do you find the exact values of \[\cos \left( {67.5} \right)\] using the half angle formula?...

How do you find the exact values of cos(67.5)\cos \left( {67.5} \right) using the half angle formula?

Explanation

Solution

By using trigonometric functions, we can apply the trigonometric ratios for the particular angle and find its value, there are trigonometric ratios for different angles. In this question to find the value of cosx\cos x we mainly use the half angle formula of cosine which is given by,
cosx=±1+cos2x2\cos x = \pm \sqrt {\dfrac{{1 + \cos 2x}}{2}} ,

Complete step-by-step answer:
Half angle formulas allow the expression of trigonometric functions of angles equal to x2\dfrac{x}{2} in terms of xx, which can simplify the functions. Half-angle formulas are useful in finding the values of unknown trigonometric functions.
Now given trigonometric ratio is cos(67.5)\cos \left( {67.5} \right),
Using half-angle formula of cosine is given by cosx=±1+cos2x2\cos x = \pm \sqrt {\dfrac{{1 + \cos 2x}}{2}} ,
So, here x=67.5x = 67.5,
Now the formula becomes,
\Rightarrow $$$$\cos 67.5 = \pm \sqrt {\dfrac{{1 + \cos 2\left( {67.5} \right)}}{2}},
Now simplifying we get,
cos67.5=±1+cos(135)2\Rightarrow \cos 67.5 = \pm \sqrt {\dfrac{{1 + \cos \left( {135} \right)}}{2}},
Now splitting the angle we get,
cos67.5=±1+cos(18045)2\Rightarrow \cos 67.5 = \pm \sqrt {\dfrac{{1 + \cos \left( {180 - 45} \right)}}{2}},
Now using the identitycos(180x)=cosx\cos \left( {180 - x} \right) = - \cos x, we get,
cos67.5=±1cos452\Rightarrow \cos 67.5 = \pm \sqrt {\dfrac{{1 - \cos 45}}{2}},
Now we know thatcos45=12\cos 45 = \dfrac{1}{{\sqrt 2 }}, so substituting the value in the expression we get,
cos67.5=±1122\Rightarrow \cos 67.5 = \pm \sqrt {\dfrac{{1 - \dfrac{1}{{\sqrt 2 }}}}{2}},
Now simplifying we get,
cos67.5=±2122\Rightarrow \cos 67.5 = \pm \sqrt {\dfrac{{\sqrt 2 - 1}}{{2\sqrt 2 }}},
Now rationalising the expression on the right hand side by multiplying and dividing with2\sqrt 2 , we gte,
cos67.5=±2122×22\Rightarrow \cos 67.5 = \pm \sqrt {\dfrac{{\sqrt 2 - 1}}{{2\sqrt 2 }} \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }}},
Now simplifying we get,
cos67.5=±222×2\Rightarrow \cos 67.5 = \pm \sqrt {\dfrac{{2 - \sqrt 2 }}{{2 \times 2}}},
Now taking the square out of the square root we get,
cos67.5=±222\Rightarrow \cos 67.5 = \pm \dfrac{{\sqrt {2 - \sqrt 2 } }}{2},
As the given angle 67.5 lies in the first quadrant, the cos value will be positive, so the required value will becos67.5=222\cos 67.5 = \dfrac{{\sqrt {2 - \sqrt 2 } }}{2}.

**Final Answer:
\therefore The exact value of cos(67.5)\cos \left( {67.5} \right) will be equal to 222\dfrac{{\sqrt {2 - \sqrt 2 } }}{2}. **

Note:
By using some half angles formula we can convert an expression with exponents to one without exponents, and whose angles are multiples of the original angle. It is to be noted that we get half angle formulas from double angle formulas. Here are some half angle identities:
sinx2=±1cosx2\sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 - \cos x}}{2}} ,
cosx2=±1+cosx2\cos \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 + \cos x}}{2}} ,
tanx2=sinx1+cosx=1cosxsinx\tan \dfrac{x}{2} = \dfrac{{\sin x}}{{1 + \cos x}} = \dfrac{{1 - \cos x}}{{\sin x}}.