Solveeit Logo

Question

Question: How do you find the exact values of \[\cos \dfrac{\pi }{8}\] using the half-angle formula?...

How do you find the exact values of cosπ8\cos \dfrac{\pi }{8} using the half-angle formula?

Explanation

Solution

Here, we will first rewrite the given angle in such a way that it is in the form of a half-angle. Then we will use the half-angle formula and a standard angle value of cosine to simplify the equation. We will then use the basic mathematical operation to simplify the equation further to find the required value.

Formula used:
The cosine of a half angle is given by the formula cosA2=±cosA+12\cos \dfrac{A}{2} = \pm \sqrt {\dfrac{{\cos A + 1}}{2}} .

Complete step-by-step solution:
We will use the half-angle formula for cosine to find the value of cosπ8\cos \dfrac{\pi }{8}.
We can rewrite the given angle as a half-angle.
Rewriting the given expression, we get
cosπ8=cos(12×π4)\cos \dfrac{\pi }{8} = \cos \left( {\dfrac{1}{2} \times \dfrac{\pi }{4}} \right)
The cosine of a half angle is given by the formula cosA2=±cosA+12\cos \dfrac{A}{2} = \pm \sqrt {\dfrac{{\cos A + 1}}{2}} .
Substituting A=π4A = \dfrac{\pi }{4} in the half angle formula, we get the equation
cos(π42)=±cosπ4+12\Rightarrow \cos \left( {\dfrac{{\dfrac{\pi }{4}}}{2}} \right) = \pm \sqrt {\dfrac{{\cos \dfrac{\pi }{4} + 1}}{2}}
Simplifying the L.H.S., we get
cosπ8=cosπ4+12\Rightarrow \cos \dfrac{\pi }{8} = \sqrt {\dfrac{{\cos \dfrac{\pi }{4} + 1}}{2}}
We will simplify the expression on the right-hand side to get the required value of cosπ8\cos \dfrac{\pi }{8}.
The cosine of an angle measuring cosπ4\cos \dfrac{\pi }{4} is equal to 12\dfrac{1}{{\sqrt 2 }}.
Substituting cosπ4=12\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} in the equation cosπ8=cosπ4+12\cos \dfrac{\pi }{8} = \sqrt {\dfrac{{\cos \dfrac{\pi }{4} + 1}}{2}} , we get
cosπ8=12+12\Rightarrow \cos \dfrac{\pi }{8} = \sqrt {\dfrac{{\dfrac{1}{{\sqrt 2 }} + 1}}{2}}
Taking the L.C.M. of the terms in the numerator, we get
cosπ8=1+222\Rightarrow \cos \dfrac{\pi }{8} = \sqrt {\dfrac{{\dfrac{{1 + \sqrt 2 }}{{\sqrt 2 }}}}{2}}
Simplifying the expression, we get
cosπ8=1+222\Rightarrow \cos \dfrac{\pi }{8} = \sqrt {\dfrac{{1 + \sqrt 2 }}{{2\sqrt 2 }}}
The denominator is a radical expression. We will rationalize the denominator.
Multiplying and dividing the fraction inside the radical sign by 2\sqrt 2 , we get
cosπ8=1+222×22\Rightarrow \cos \dfrac{\pi }{8} = \sqrt {\dfrac{{1 + \sqrt 2 }}{{2\sqrt 2 }} \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }}}
Multiplying the terms using the distributive law of multiplication, we get
cosπ8=2+22×2 cosπ8=2+24\begin{array}{l} \Rightarrow \cos \dfrac{\pi }{8} = \sqrt {\dfrac{{\sqrt 2 + 2}}{{2 \times 2}}} \\\ \Rightarrow \cos \dfrac{\pi }{8} = \sqrt {\dfrac{{\sqrt 2 + 2}}{4}} \end{array}
The number 4 is a perfect square.
Taking the perfect square outside the radical sign, we get
cosπ8=2+22\therefore \cos \dfrac{\pi }{8}=\dfrac{\sqrt{\sqrt{2}+2}}{2}

Therefore, we get the required value of cosπ8\cos \dfrac{\pi }{8} as 2+22\dfrac{{\sqrt {\sqrt 2 + 2} }}{2}.

Note:
The half angle formula for cosine is derived from the double angle formula for cosine. The cosine of a double angle is given by the formula cos2A=2cos2A1\cos 2A = 2{\cos ^2}A - 1. We can observe that by rearranging the double angle formula, we get the equation cosA=cos2A+12\cos A = \sqrt {\dfrac{{\cos 2A + 1}}{2}} . This can be written as the half angle formula cosA2=cosA+12\cos \dfrac{A}{2} = \sqrt {\dfrac{{\cos A + 1}}{2}} .
We have considered cosπ8=cosπ4+12\cos \dfrac{\pi }{8} = \sqrt {\dfrac{{\cos \dfrac{\pi }{4} + 1}}{2}} and not cosπ8=cosπ4+12\cos \dfrac{\pi }{8} = - \sqrt {\dfrac{{\cos \dfrac{\pi }{4} + 1}}{2}} because the angle π8\dfrac{\pi }{8} lies in the first quadrant, and the trigonometric ratio of cosine of any angle in the first quadrant is positive.