Solveeit Logo

Question

Question: How do you find the exact value of \[\tan x - 3\cot x = 0\] in the interval \[0 \leqslant x < {360^ ...

How do you find the exact value of tanx3cotx=0\tan x - 3\cot x = 0 in the interval 0x<3600 \leqslant x < {360^ \circ }

Explanation

Solution

We use the substitution of cotangent in terms of tangent of the function. Equate the value to zero and write the value of tangent of angle. Use a quadrant diagram to write the values between 0 and 360{360^ \circ }.
cotx=1tanx\cot x = \dfrac{1}{{\tan x}}
We know the values of all trigonometric angles are positive in the first quadrant.
Values of only sinθ\sin \theta are positive in the second quadrant.
Values of only tanθ\tan \theta are positive in the third quadrant.
Values of only cosθ\cos \theta are positive in the fourth quadrant.

Complete step-by-step solution:
We have to solve for the value of x in tanx3cotx=0\tan x - 3\cot x = 0 … (1)
Substitute the value of cotx=1tanx\cot x = \dfrac{1}{{\tan x}}in equation (1)
tanx3tanx=0\Rightarrow \tan x - \dfrac{3}{{\tan x}} = 0
Take LCM in left hand side of the equation
tan2x3tanx=0\Rightarrow \dfrac{{{{\tan }^2}x - 3}}{{\tan x}} = 0
Cross multiply the denominator of left hand side of the equation to right hand side of the equation
tan2x3=0\Rightarrow {\tan ^2}x - 3 = 0
Shift constant value to right hand side of the equation
tan2x=3\Rightarrow {\tan ^2}x = 3
Take square root on both sides of the equation
tan2x=±3\Rightarrow \sqrt {{{\tan }^2}x} = \pm \sqrt 3
Cancel square root by square power on left side of the equation
tanx=±3\Rightarrow \tan x = \pm \sqrt 3 … (1)
Then we can write tanx=3\tan x = \sqrt 3 and tanx=3\tan x = - \sqrt 3
We know that the value of tanπ3=3\tan \dfrac{\pi }{3} = \sqrt 3
Also, we know tan is an odd function, so, tan(x)=tanx\tan ( - x) = - \tan xand that tangent function is positive in the first and third quadrant and is negative in the second and fourth quadrant.

Then we can write tanx=3\tan x = \sqrt 3 gives the angles π3\dfrac{\pi }{3}and π+π3=4π3\pi + \dfrac{\pi }{3} = \dfrac{{4\pi }}{3}
So, the angles for tanx=3\tan x = \sqrt 3 are 60{60^ \circ }and 240{240^ \circ } between 0x<3600 \leqslant x < {360^ \circ }
And tanx=3\tan x = - \sqrt 3 gives the angles ππ3=2π3\pi - \dfrac{\pi }{3} = \dfrac{{2\pi }}{3}and 2ππ3=5π32\pi - \dfrac{\pi }{3} = \dfrac{{5\pi }}{3}
So, the angles for tanx=3\tan x = - \sqrt 3 are 120{120^ \circ } and 300{300^ \circ } between 0x<3600 \leqslant x < {360^ \circ }

\therefore The exact value of tanx3cotx=0\tan x - 3\cot x = 0 in the interval 0x<3600 \leqslant x < {360^ \circ } is 60,120,240,300{60^ \circ },{120^ \circ },{240^ \circ },{300^ \circ }

Note: Many students make the mistake of writing the square root of 3 as only positive value which is wrong as we know the square root gives both negative and positive value of the number. Keep in mind we can use table for trigonometric terms if we don’t remember the values at some common angles 0,30,45,60,90{0^ \circ },{30^ \circ },{45^ \circ },{60^ \circ },{90^ \circ }

ANGLEFUNCTION0{0^ \circ }30{30^ \circ }45{45^ \circ }60{60^ \circ }90{90^ \circ }
Sin012\dfrac{1}{2}12\dfrac{1}{{\sqrt 2 }}32\dfrac{{\sqrt 3 }}{2}1
Cos132\dfrac{{\sqrt 3 }}{2}12\dfrac{1}{{\sqrt 2 }}12\dfrac{1}{2}0
Tan013\dfrac{1}{{\sqrt 3 }}13\sqrt 3 Not defined