Solveeit Logo

Question

Question: How do you find the exact value of \( \tan \left( {\dfrac{{7\pi }}{6}} \right) \) ?...

How do you find the exact value of tan(7π6)\tan \left( {\dfrac{{7\pi }}{6}} \right) ?

Explanation

Solution

Hint : In the given problem, we are required to find the tangent of a given angle using some simple and basic trigonometric compound angle formulae and trigonometric identities such as tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} . Such questions require basic knowledge of compound angle formulae and their applications in this type of questions.

Complete step-by-step answer :
Consider a unit circle (a circle of radius of 1 unit centered at origin). We need to find out the value of cos53π6\cos \dfrac{{53\pi }}{6} using the unit circle.
So, we have, tan(7π6)\tan \left( {\dfrac{{7\pi }}{6}} \right) .
We know the compound angle formula for tangent as tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} . So, splitting the angle of the trigonometric ratio into two parts, we get,
tan(7π6)=tan(π+π6)\Rightarrow \tan \left( {\dfrac{{7\pi }}{6}} \right) = \tan \left( {\pi + \dfrac{\pi }{6}} \right)
So, using the tangent compound angle formula, we get,
tan(7π6)=tan(π)+tan(π6)1tan(π)tan(π6)\Rightarrow \tan \left( {\dfrac{{7\pi }}{6}} \right) = \dfrac{{\tan \left( \pi \right) + \tan \left( {\dfrac{\pi }{6}} \right)}}{{1 - \tan \left( \pi \right)\tan \left( {\dfrac{\pi }{6}} \right)}}
Now, we know that the value of the tangent trigonometric function at angle π\pi radians is zero. So, we get,
tan(7π6)=0+tan(π6)1(0)tan(π6)\Rightarrow \tan \left( {\dfrac{{7\pi }}{6}} \right) = \dfrac{{0 + \tan \left( {\dfrac{\pi }{6}} \right)}}{{1 - \left( 0 \right)\tan \left( {\dfrac{\pi }{6}} \right)}}
Simplifying the expression further, we get,
tan(7π6)=tan(π6)10\Rightarrow \tan \left( {\dfrac{{7\pi }}{6}} \right) = \dfrac{{\tan \left( {\dfrac{\pi }{6}} \right)}}{{1 - 0}}
We know that the value of tan(π6)\tan \left( {\dfrac{\pi }{6}} \right) is 13\dfrac{1}{{\sqrt 3 }} . So, we get,
tan(7π6)=13\Rightarrow \tan \left( {\dfrac{{7\pi }}{6}} \right) = \dfrac{1}{{\sqrt 3 }}
Hence, the value of tan(7π6)\tan \left( {\dfrac{{7\pi }}{6}} \right) is (13)\left( {\dfrac{1}{{\sqrt 3 }}} \right) .
So, the correct answer is “(13)\left( {\dfrac{1}{{\sqrt 3 }}} \right)”.

Note : Periodic Function is a function that repeats its value after a certain interval. The given problem can also be solved using the periodicity of the tangent function. We know that the tangent function has π\pi radians as its fundamental period. So, the value of tan(7π6)\tan \left( {\dfrac{{7\pi }}{6}} \right) is same as value of tan(7π6π)\tan \left( {\dfrac{{7\pi }}{6} - \pi } \right) . For a real number T>0T > 0 , f(x+T)=f(x)f\left( {x + T} \right) = f\left( x \right) for all x, if T is the smallest positive real number such that f(x+T)=f(x)f\left( {x + T} \right) = f\left( x \right) for all x, then T is called the fundamental period. Take care of the calculative steps in order to be sure of the final answer.