Solveeit Logo

Question

Question: How do you find the exact value of \(\tan \left( {\dfrac{{ - \pi }}{{12}}} \right)\) ?...

How do you find the exact value of tan(π12)\tan \left( {\dfrac{{ - \pi }}{{12}}} \right) ?

Explanation

Solution

To get a better understanding of the angle, we shall convert the angle from radians to degree. If the angle is not one of the standard values we remember from the trigonometric table, we split the angle into two standard angles whose tangent value we know, such that the sum or difference of two angles results in the given angle.

Complete step-by-step answer:
To know if the given angle is from the table with the values of sine, cosine, and tangent functions for some standard trigonometric angles, we shall convert the given angle into degrees.
As we know, to convert an angle from radian to degree, we must multiply the angle with the factor 180π\dfrac{{180}}{\pi } .
Degrees = 180π×π12\Rightarrow {\text{Degrees = }}\dfrac{{180}}{\pi } \times \dfrac{{ - \pi }}{{12}}
Converting to factors and rearranging the equation,
Degrees = π×15×12π×12\Rightarrow {\text{Degrees = }}\dfrac{{ - \pi \times 15 \times 12}}{{\pi \times 12}}
Degrees = 15\Rightarrow {\text{Degrees = }} - 15^\circ
Hence, we can write π12\dfrac{{ - \pi }}{{12}} in degrees as 15- 15^\circ .
But, as we know 15- 15^\circ is not one of the standard angles whose tangent value we remember.
Hence we need to split 15- 15^\circ in two different angles whose tangent value is known to us such that the sum or difference of the two angles should result in 15- 15^\circ .
Let us consider here the angels 6060^\circ and 4545^\circ .
If we subtract 6060^\circ from 4545^\circ , we get the result as 15- 15^\circ, and also the tangent value of 4545^\circ and 6060^\circ is known to us.
Hence, we can write tangent of 15- 15^\circ as
tan(15)=tan(4560)\Rightarrow \tan ( - 15^\circ ) = \tan (45^\circ - 60^\circ )
Let’s consider this equation as an Equation (1)(1) .
Here, we need to use the trigonometric identity for the tangent of the sum of two angles or the difference of two angles, which is as follows
tan(x+y)=tanx+tany1tanxtany\tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}
tan(xy)=tanxtany1+tanxtany\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x\tan y}}
Here, in the second identity, if we replace xx by 4545^\circ and yy by 6060^\circ, we can obtain the value of tan(15)\tan ( - 15^\circ ) , as shown
tan(4560)=tan45tan601+tan45tan60\Rightarrow \tan (45^\circ - 60^\circ ) = \dfrac{{\tan 45^\circ - \tan 60^\circ }}{{1 + \tan 45^\circ \tan 60^\circ }}
Now, we know the values of the angles as
\Rightarrow tan45=1\tan 45^\circ = 1
\Rightarrow tan60=3\tan 60^\circ = \sqrt 3
Substituting these values in the equation
tan(4560)=131+(1)(3)\Rightarrow \tan (45^\circ - 60^\circ ) = \dfrac{{1 - \sqrt 3 }}{{1 + (1)\left( {\sqrt 3 } \right)}}
tan(4560)=131+3\Rightarrow \tan (45^\circ - 60^\circ ) = \dfrac{{1 - \sqrt 3 }}{{1 + \sqrt 3 }}
Substituting the value from the equation (1)(1) ,
tan(15)=131+3\Rightarrow \tan ( - 15^\circ ) = \dfrac{{1 - \sqrt 3 }}{{1 + \sqrt 3 }}
Now, rationalizing the answer by multiplying the numerator and the denominator by 131 - \sqrt 3
tan(15)=131+3×1313\Rightarrow \tan ( - 15^\circ ) = \dfrac{{1 - \sqrt 3 }}{{1 + \sqrt 3 }} \times \dfrac{{1 - \sqrt 3 }}{{1 - \sqrt 3 }}
Multiplying the numerators and the denominators
tan(15)=(13)(13)(1+3)(13)\Rightarrow \tan ( - 15^\circ ) = \dfrac{{(1 - \sqrt 3 )(1 - \sqrt 3 )}}{{(1 + \sqrt 3 )(1 - \sqrt 3 )}}
Simplifying the equation by opening the brackets,
tan(15)=1×11×33×1+3×31×11×3+3×13×3\Rightarrow \tan ( - 15^\circ ) = \dfrac{{1 \times 1 - 1 \times \sqrt 3 - \sqrt 3 \times 1 + \sqrt 3 \times \sqrt 3 }}{{1 \times 1 - 1 \times \sqrt 3 + \sqrt 3 \times 1 - \sqrt 3 \times \sqrt 3 }}
tan(15)=133+313+33\Rightarrow \tan ( - 15^\circ ) = \dfrac{{1 - \sqrt 3 - \sqrt 3 + 3}}{{1 - \sqrt 3 + \sqrt 3 - 3}}
Rearranging the numerator and denominator,
tan(15)=1+333133+3\Rightarrow \tan ( - 15^\circ ) = \dfrac{{1 + 3 - \sqrt 3 - \sqrt 3 }}{{1 - 3 - \sqrt 3 + \sqrt 3 }}
tan(15)=4232\Rightarrow \tan ( - 15^\circ ) = \dfrac{{4 - 2\sqrt 3 }}{{ - 2}}
Eliminating the common factor   2\; - 2 from numerator and denominator
tan(15)=32\Rightarrow \tan ( - 15^\circ ) = \sqrt 3 - 2

Hence the exact value of tan(π12)\tan \left( {\dfrac{{ - \pi }}{{12}}} \right) is 32\sqrt 3 - 2.

Note:
The pair of angles considered here to get the angle 15- 15^\circ is not mandatory. You can take any other pair whose sum or difference leads to 15- 15^\circ and the sine, cosine, and tangent values of both the angles should be known.