Solveeit Logo

Question

Question: How do you find the exact value of \[\tan 405\] degrees?...

How do you find the exact value of tan405\tan 405 degrees?

Explanation

Solution

Hint : We have to find the value of tan405\tan {405^ \circ }. For this, we will first write the given 405{405^ \circ } as a sum of the known angles and then we will convert it using the trigonometric ratios of compound angles formula accordingly. Then using the values of trigonometric ratios of some standard angles we will find the result.

Complete step-by-step answer :
To solve this problem, we should know some basic terms that are:
Trigonometric Ratios of Allied angles:
Two angles are said to be allied when their sum or difference is either zero or a multiple of 90{90^ \circ }.
Trigonometric Ratios:
Trigonometric ratios are the relation between different sides and angles of a right-angled triangle.
Trigonometric Ratios of Compound angles:
Generally, the algebraic sum of two or more angles are called compound angles.
We will use the standard formula which will simplify the question i.e., tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
Now, from the given question we have
tan405\Rightarrow \tan {405^ \circ }
On writing in terms of compound angles, we get
tan(360+45)\Rightarrow \tan \left( {{{360}^ \circ } + {{45}^ \circ }} \right)
Using the formula of tan(A+B)\tan \left( {A + B} \right) we get
tan(360+45)=tan360+tan451tan360tan45\Rightarrow \tan \left( {{{360}^ \circ } + {{45}^ \circ }} \right) = \dfrac{{\tan {{360}^ \circ } + \tan {{45}^ \circ }}}{{1 - \tan {{360}^ \circ }\tan {{45}^ \circ }}}
As we know tan360=0\tan {360^ \circ } = 0 and tan45=1\tan {45^ \circ } = 1, using this we will get
tan405=0+11(0)×(1)\Rightarrow \tan {405^ \circ } = \dfrac{{0 + 1}}{{1 - \left( 0 \right) \times \left( 1 \right)}}
On solving we get
tan405=1\Rightarrow \tan {405^ \circ } = 1
Therefore, the value of tan405\tan {405^ \circ } is 11.
So, the correct answer is “1”.

Note : We can also solve this problem by another method.
As we know, tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
Therefore, using this we can write
tan405=sin405cos405\Rightarrow \tan {405^ \circ } = \dfrac{{\sin {{405}^ \circ }}}{{\cos {{405}^ \circ }}}
On writing in terms of compound angles, we get
tan405=sin(360+45)cos(360+45)(1)\Rightarrow \tan {405^ \circ } = \dfrac{{\sin \left( {{{360}^ \circ } + {{45}^ \circ }} \right)}}{{\cos \left( {{{360}^ \circ } + {{45}^ \circ }} \right)}} - - - \left( 1 \right)
By compound angle formula we know that,
sin(A+B)=sinAcosB+sinBcosA\sin \left( {A + B} \right) = \sin A\cos B + \sin B\cos A
cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B
Using these compound angle formulas, we can write (1)\left( 1 \right) as
tan405=sin360cos45+sin45cos360cos360cos45sin360sin45\Rightarrow \tan {405^ \circ } = \dfrac{{\sin {{360}^ \circ }\cos {{45}^ \circ } + \sin {{45}^ \circ }\cos {{360}^ \circ }}}{{\cos {{360}^ \circ }\cos {{45}^ \circ } - \sin {{360}^ \circ }\sin {{45}^ \circ }}}
As we know, sin360=0\sin {360^ \circ } = 0, cos360=1\cos {360^ \circ } = 1 sin45=12\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}, cos45=12\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}.
Using these values, we get
tan405=(0)×(12)+(12)×(1)(1)×(12)(0)×(12)\Rightarrow \tan {405^ \circ } = \dfrac{{\left( 0 \right) \times \left( {\dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{1}{{\sqrt 2 }}} \right) \times \left( 1 \right)}}{{\left( 1 \right) \times \left( {\dfrac{1}{{\sqrt 2 }}} \right) - \left( 0 \right) \times \left( {\dfrac{1}{{\sqrt 2 }}} \right)}}
On solving we get
tan405=1212\Rightarrow \tan {405^ \circ } = \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{{\sqrt 2 }}}}
On further solving we get the result as
tan405=1\Rightarrow \tan {405^ \circ } = 1