Solveeit Logo

Question

Question: How do you find the exact value of \(\sin \left( {\dfrac{\pi }{{12}}} \right)\)?...

How do you find the exact value of sin(π12)\sin \left( {\dfrac{\pi }{{12}}} \right)?

Explanation

Solution

In order to solve this question ,convert (π12)\left( {\dfrac{\pi }{{12}}} \right) into some (A-B) and apply sin(AB)\sin \left( {A - B} \right) formula to calculate the answer.

Formula used:
sin(AB)=sin(A)cos(B)sin(B)cos(A)\sin \left( {A - B} \right) = \sin \left( A \right)\cos \left( B \right) - \sin \left( B \right)\cos \left( A \right)

Complete step-by-step answer:
In trigonometric table ,the value of sin(π12)\sin \left( {\dfrac{\pi }{{12}}} \right) is not given ,so to find this we have use some other means to find the required value .We’ll use other trigonometric values given in the trigonometric table .
First ,we’ll ,convert (π12)\left( {\dfrac{\pi }{{12}}} \right) into some (A-B) form
sin(π12)=sin(π4π6)\sin \left( {\dfrac{\pi }{{12}}} \right) = \sin \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right)
Now we will apply formula sin(AB)=sin(A)cos(B)sin(B)cos(A)\sin \left( {A - B} \right) = \sin \left( A \right)\cos \left( B \right) - \sin \left( B \right)\cos \left( A \right)
Where , A is equal to π4\dfrac{\pi }{4} and B is equal to π6\dfrac{\pi }{6}
sin(π4π6)=sin(π4)cos(π6)sin(π6)cos(π4)\sin \left( {\dfrac{\pi }{4} - \dfrac{\pi }{6}} \right) = \sin \left( {\dfrac{\pi }{4}} \right)\cos \left( {\dfrac{\pi }{6}} \right) - \sin \left( {\dfrac{\pi }{6}} \right)\cos \left( {\dfrac{\pi }{4}} \right) -(1)
From the trigonometric table
sin(π4)=12=22\sin \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\, = \,\dfrac{{\sqrt 2 }}{2} ,
sin(π6)=12\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2}
cos(π4)=12=22\cos \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\, = \,\dfrac{{\sqrt 2 }}{2}
cos(π6)=32\cos \left( {\dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 }}{2}
Putting values in equation (1)
=12×3212×22 =6424 =624  = \dfrac{{\sqrt 1 }}{2} \times \dfrac{{\sqrt 3 }}{2} - \dfrac{1}{2} \times \dfrac{{\sqrt 2 }}{2} \\\ = \dfrac{{\sqrt 6 }}{4} - \dfrac{{\sqrt 2 }}{4} \\\ = \dfrac{{\sqrt 6 - \sqrt 2 }}{4} \\\
Therefore, the value of sin(π12)\sin \left( {\dfrac{\pi }{{12}}} \right) is equal to 624\dfrac{{\sqrt 6 - \sqrt 2 }}{4}.

Note: 1. Periodic Function= A function f(x)f(x) is said to be a periodic function if there exists a real number T > 0 such that f(x+T)=f(x)f(x + T) = f(x) for all x.
If T is the smallest positive real number such that f(x+T)=f(x)f(x + T) = f(x) for all x, then T is called the fundamental period of f(x)f(x) .
Since sin(2nπ+θ)=sinθ\sin \,(2n\pi + \theta ) = \sin \theta for all values of θ\theta and n\inN.
2. Even Function – A function f(x)f(x) is said to be an even function ,if f(x)=f(x)f( - x) = f(x) for all x in its domain.
Odd Function – A function f(x)f(x) is said to be an even function ,if f(x)=f(x)f( - x) = - f(x) for all x in its domain.
We know that sin(θ)=sinθ.cos(θ)=cosθandtan(θ)=tanθ\sin ( - \theta ) = - \sin \theta .\cos ( - \theta ) = \cos \theta \,and\,\tan ( - \theta ) = - \tan \theta
Therefore,sinθ\sin \theta and tanθ\tan \theta and their reciprocals,cosecθ\cos ec\theta and cotθ\cot \theta are odd functions whereas cosθ\cos \theta and its reciprocal secθ\sec \theta are even functions.