Solveeit Logo

Question

Question: How do you find the exact value of, \(\sin \left( \dfrac{19 \pi}{12} \right)\) ?...

How do you find the exact value of, sin(19π12)\sin \left( \dfrac{19 \pi}{12} \right) ?

Explanation

Solution

To find the exact value of sin(19π12)\sin \left( \dfrac{19 \pi}{12} \right), we will first of all find the quadrant of this angle. As one can see, this angle is greater than (18π12)\left( \dfrac{18 \pi}{12} \right) and less than (24pi12)\left( \dfrac{24pi}{12} \right), then it means the angle lies in the fourth quadrant. The “sine” of any angle in the fourth quadrant can be calculated using the formula, [sinθ=sin(360θ):270θ360]\left[ \sin \theta =-\sin \left( {{360}^{\circ }}-\theta \right):{{270}^{\circ }}\le \theta \le {{360}^{\circ }} \right] . We shall proceed using this formula to get our solution.

Complete step-by-step solution:
The first step towards our solution will be to convert the angle in radians to angle in degrees as this makes the problem easy to visualize and solve. This can be done by putting the value of 1 pi radian as 180{{180}^{\circ }}. On doing so we get the new expression as:
=sin(19π12) =sin(19×18012) =sin(285) \begin{aligned} & =\sin \left( \dfrac{19 \pi}{12} \right) \\\ & =\sin \left( \dfrac{19\times {{180}^{\circ }}}{12} \right) \\\ & =\sin \left( {{285}^{\circ }} \right) \\\ \end{aligned}
Now, this angle in fourth quadrant could be calculated as follows:
sin(285)=sin(360285) sin(285)=sin(75) \begin{aligned} & \Rightarrow \sin \left( {{285}^{\circ }} \right)=-\sin \left( {{360}^{\circ }}-{{285}^{\circ }} \right) \\\ & \Rightarrow \sin \left( {{285}^{\circ }} \right)=-\sin \left( {{75}^{\circ }} \right) \\\ \end{aligned}
Now, the angle operated by ‘sine’ could be split into two standard angles whose values are known. And then, we could apply the sum of angles formula for a sine function which is given as:
sin(A+B)=sinAcosB+cosAsinB\Rightarrow \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B
Applying these steps simultaneously, we get:
sin(285)=sin(30+45)\Rightarrow \sin \left( {{285}^{\circ }} \right)=-\sin \left( {{30}^{\circ }}+{{45}^{\circ }} \right)
sin(285)=[sin30cos45+cos30sin45] sin(285)=[12×12+32×12] sin(285)=[122+322] sin(285)=[3+122] \begin{aligned} & \Rightarrow \sin \left( {{285}^{\circ }} \right)=-\left[ \sin {{30}^{\circ }}\cos {{45}^{\circ }}+\cos {{30}^{\circ }}\sin {{45}^{\circ }} \right] \\\ & \Rightarrow \sin \left( {{285}^{\circ }} \right)=-\left[ \dfrac{1}{2}\times \dfrac{1}{\sqrt{2}}+\dfrac{\sqrt{3}}{2}\times \dfrac{1}{\sqrt{2}} \right] \\\ & \Rightarrow \sin \left( {{285}^{\circ }} \right)=-\left[ \dfrac{1}{2\sqrt{2}}+\dfrac{\sqrt{3}}{2\sqrt{2}} \right] \\\ & \Rightarrow \sin \left( {{285}^{\circ }} \right)=-\left[ \dfrac{\sqrt{3}+1}{2\sqrt{2}} \right] \\\ \end{aligned}

Using the value of:
3 as 1.732\sqrt{3}\text{ as 1}\text{.732}, and
2 as 1.414\sqrt{2}\text{ as 1}\text{.414}
We get the final result of our solution as:
sin(285)=[1.732+12×1.414] sin(285)=[2.7322.828] sin(285)=0.966 \begin{aligned} & \Rightarrow \sin \left( {{285}^{\circ }} \right)=-\left[ \dfrac{1.732+1}{2\times 1.414} \right] \\\ & \Rightarrow \sin \left( {{285}^{\circ }} \right)=-\left[ \dfrac{2.732}{2.828} \right] \\\ & \therefore \sin \left( {{285}^{\circ }} \right)=-0.966 \\\ \end{aligned}
Hence, the exact value of, sin(19π12)\sin \left( \dfrac{19 \pi}{12} \right) comes out to be 0.966-0.966.

Note: In lengthy trigonometric calculations like these, one should be very careful of concurring any silly mistakes in the solution. Also, we should know the square root values of very common numbers like square root of 2, square root of 3, square root of 5 and so on up to square root of 8. Their values may or may not be specified in the problem, so one should remember these in order to avoid any difficulties while solving such problems.