Solveeit Logo

Question

Question: How do you find the exact value of \(\sec \left( { - \dfrac{\pi }{3}} \right)\)?...

How do you find the exact value of sec(π3)\sec \left( { - \dfrac{\pi }{3}} \right)?

Explanation

Solution

The negative sign given in question ; that means it is measured in a clockwise direction. We shall try to get the equivalent positive angle (measured in a counter-clockwise direction) to solve the problem.
Also, we have to keep in mind that the secant function is positive in the first and fourth quadrant.

Formula used: 1radian=180π1radian = \dfrac{{180^\circ }}{\pi }

Complete step-by-step answer:
First of all, let us find the equivalent positive angle of (π3)\left( {\dfrac{{ - \pi }}{3}} \right) .
Since the magnitude of the angle is less than 2π2\pi , we can find the required angle by adding 2π2\pi .
That is,
(π3)(2π+π3)=(5π3)\left( {\dfrac{{ - \pi }}{3}} \right) \Leftrightarrow \left( {2\pi + \dfrac{{ - \pi }}{3}} \right) = \left( {\dfrac{{5\pi }}{3}} \right)
That is the equivalent positive angle (measure anti-clockwise) is (5π3)radians\left( {\dfrac{{5\pi }}{3}} \right)radians .
Now, let us convert this into a degree measure using the formula 1radian=180π1radian = \dfrac{{180^\circ }}{\pi } .
(5π3)radians=5π3×180π=300\Rightarrow \left( {\dfrac{{5\pi }}{3}} \right)radians = \dfrac{{5\pi }}{3} \times \dfrac{{180^\circ }}{\pi } = 300^\circ
Now, 300300^\circ lies in the 4th{4^{th}}quadrant and hence its secant value is positive.
Therefore, we have
sec(π3)=sec(300)\sec \left( { - \dfrac{\pi }{3}} \right) = \sec \left( {300^\circ } \right)
sec(300)=sec(36060)\Rightarrow \sec \left( {300^\circ } \right) = \sec \left( {360^\circ - 60^\circ } \right)
Now, we know that the period of secant function is 2π2\pi or 360360^\circ .
Therefore,
sec(36060)=sec(360+(60))=sec(60)\sec \left( {360^\circ - 60^\circ } \right) = \sec \left( {360^\circ + \left( { - 60^\circ } \right)} \right) = \sec \left( { - 60^\circ } \right)
Now, we know that secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }}
Also, we know that cos(θ)=cos(θ)\cos \left( { - \theta } \right) = \cos \left( \theta \right)
sec(θ)=1cos(θ)=1cos(θ)=sec(θ)\Rightarrow \sec \left( { - \theta } \right) = \dfrac{1}{{\cos \left( { - \theta } \right)}} = \dfrac{1}{{\cos \left( \theta \right)}} = \sec \left( \theta \right)
sec(60)=sec(60)\Rightarrow \sec \left( { - 60^\circ } \right) = \sec \left( {60^\circ } \right)
As we all know, sec(60)=2\sec \left( {60^\circ } \right) = 2
Therefore,
sec(π3)=2\sec \left( {\dfrac{{ - \pi }}{3}} \right) = 2 , which is our final answer.

Additional information:
If the angle within the trigonometric function is greater than 360360^\circ , then we have to remove full rotations of 360360^\circ until finally, we obtain an angle θ\theta , such that
0θ2π0 \leqslant \theta \leqslant 2\pi .

Note: The negative angle inside a trigonometric function can be removed easily using the following properties,
sin(x)=sinx\sin \left( { - x} \right) = - \sin x
cos(x)=cosx\cos \left( { - x} \right) = \cos x
For the rest of the ratios, these two relations can be used.