Solveeit Logo

Question

Question: How do you find the exact value of \[\csc \left[ \arctan \left( -\dfrac{5}{12} \right) \right]\]?...

How do you find the exact value of csc[arctan(512)]\csc \left[ \arctan \left( -\dfrac{5}{12} \right) \right]?

Explanation

Solution

Write arctan(512)=tan1(512)\arctan \left( -\dfrac{5}{12} \right)={{\tan }^{-1}}\left( \dfrac{-5}{12} \right) and use the properties tan1(x)=tan1x{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}x and csc(θ)=cscθ\csc \left( -\theta \right)=-\csc \theta to simplify the given expression. Now, assume a right-angle triangle with its perpendicular as 5 units and base as 12 units. Apply the Pythagoras theorem given as: - h2=p2+b2{{h}^{2}}={{p}^{2}}+{{b}^{2}} to determine the hypotenuse. Here, p = perpendicular, b = base and h = hypotenuse. Convert tan1(512){{\tan }^{-1}}\left( \dfrac{5}{12} \right) into csc1{{\csc }^{-1}} function and then apply the formula: - csc(csc1x)=x\csc \left( {{\csc }^{-1}}x \right)=x to get the answer.

Complete step-by-step solution:
Here, we have been provided with the expression csc[arctan(512)]\csc \left[ \arctan \left( -\dfrac{5}{12} \right) \right] and we are asked to find its value. So, let us assume the value of this expression as ‘E’.
E=csc[arctan(512)]\Rightarrow E=\csc \left[ \arctan \left( -\dfrac{5}{12} \right) \right]
Here, arctan\arctan function means inverse tangent function, so we have,
E=csc[tan1(512)]\Rightarrow E=\csc \left[ {{\tan }^{-1}}\left( \dfrac{-5}{12} \right) \right]
We know that tan1(x)=tan1x{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}x, we get,
E=csc[tan1(512)]\Rightarrow E=\csc \left[ -{{\tan }^{-1}}\left( \dfrac{5}{12} \right) \right]
Now, using the property csc(θ)=cscθ\csc \left( -\theta \right)=-\csc \theta , we get,
E=csc[tan1(512)]\Rightarrow E=-\csc \left[ {{\tan }^{-1}}\left( \dfrac{5}{12} \right) \right]
We know that tanθ\tan \theta = (perpendicular / base) = pb\dfrac{p}{b}, so we have,
θ=tan1(pb)\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{p}{b} \right)
On comparing the above relation with tan1(512){{\tan }^{-1}}\left( \dfrac{5}{12} \right), we have,
\Rightarrow p = 5 units and b = 12 units
So, applying the Pythagoras theorem given as: - where p = perpendicular, b = base and h = hypotenuse, we get,
h2=p2+b2\Rightarrow {{h}^{2}}={{p}^{2}}+{{b}^{2}}
Substituting the values of p and b, we have,

& \Rightarrow {{h}^{2}}={{5}^{2}}+{{12}^{2}} \\\ & \Rightarrow {{h}^{2}}=25+144 \\\ & \Rightarrow {{h}^{2}}=169 \\\ \end{aligned}$$ Taking square root both the sides, we get, $$\Rightarrow h=\sqrt{169}$$ $$\Rightarrow h=13$$ units Now, we know that $$\csc \theta $$ = (hypotenuse / perpendicular) = $$\dfrac{h}{p}$$, so we have, $$\Rightarrow \theta ={{\csc }^{-1}}\left( \dfrac{h}{p} \right)$$ Therefore, converting $${{\tan }^{-1}}\left( \dfrac{5}{12} \right)$$ into $${{\csc }^{-1}}$$ function, we get, $$\Rightarrow {{\tan }^{-1}}\left( \dfrac{5}{12} \right)={{\csc }^{-1}}\left( \dfrac{13}{5} \right)$$ Therefore, the given expression becomes, $$\Rightarrow E=-\csc \left[ {{\csc }^{-1}}\left( \dfrac{13}{5} \right) \right]$$ Using the identity, $${{\csc }^{-1}}\left( {{\csc }^{-1}}x \right)=x$$, we get, $$\Rightarrow E=-\dfrac{13}{5}$$ **Hence, the value of the given expression is $$-\dfrac{13}{5}$$.** **Note:** One may note that there is no option other than converting the given inverse tangent function into cosecant inverse function. We cannot convert it into any other inverse function of trigonometry because then we would not be able to apply the required formula. So, it is necessary to check which function is outside. Here, it was a cosecant function. You must remember the Pythagoras theorem to solve the question.