Solveeit Logo

Question

Question: How do you find the exact value of \[\cos \left( {\dfrac{{2\pi }}{3}} \right)\]?...

How do you find the exact value of cos(2π3)\cos \left( {\dfrac{{2\pi }}{3}} \right)?

Explanation

Solution

In this question we have to find the value of cos value of the angle given, this can be done by using trigonometric double angle identity i.e.,cos2A=2cos2A1\cos 2A = 2{\cos ^2}A - 1, and we should know that the value of cos(π3)=12\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}, and substituting the values in the identities we will get the required value.

Complete step-by-step solution:
Given trigonometric expression is cos(2π3)\cos \left( {\dfrac{{2\pi }}{3}} \right),
Now transforming the expression in form of cos2A\cos 2A, we get,
cos2(π3)\Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right),
We know that the trigonometric identity for the double angle for cos which is given by,
cos2A=2cos2A1\cos 2A = 2{\cos ^2}A - 1,
Now comparing two expressions we get, hereA=π3A = \dfrac{\pi }{3},b
By substituting the value in the trigonometric identity, cos2A=2cos2A1\cos 2A = 2{\cos ^2}A - 1, we get,
cos2(π3)=2cos2π31\Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = 2{\cos ^2}\dfrac{\pi }{3} - 1,
We know thatcos(π3)=12\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}, now substituting the value in the identity we get,
cos2(π3)=2(12)21\Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = 2{\left( {\dfrac{1}{2}} \right)^2} - 1,
So, now simplifying we get,
cos2(π3)=2(14)1\Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = 2\left( {\dfrac{1}{4}} \right) - 1,
Now removing the brackets by doing multiplication we get,
cos2(π3)=121\Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2} - 1,
Now taking the L.C.M on the right hand side we get,
cos2(π3)=122\Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = \dfrac{{1 - 2}}{2},
By further simplification we get,
cos2(π3)=12\Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = \dfrac{{ - 1}}{2},
So, the exact value for the cos is 12\dfrac{{ - 1}}{2}.

\therefore The exact value for the given cos angle i.e., cos(2π3)\cos \left( {\dfrac{{2\pi }}{3}} \right) will be equal to 12\dfrac{{ - 1}}{2}.

Note: This question can be solved by another method by using the identity cos(πθ)=cosθ\cos \left( {\pi - \theta } \right) = - \cos \theta , so here 2π3\dfrac{{2\pi }}{3} can be written as,ππ3\pi - \dfrac{\pi }{3}, i.e,
2π3=ππ3\Rightarrow \dfrac{{2\pi }}{3} = \pi - \dfrac{\pi }{3},
Now applying cos on both sides we get,
cos2π3=cos(ππ3)\Rightarrow \cos \dfrac{{2\pi }}{3} = \cos \left( {\pi - \dfrac{\pi }{3}} \right),
We know that cos(πθ)=cosθ\cos \left( {\pi - \theta } \right) = - \cos \theta , now applying the identity we get,
cos2π3=cos(π3)\Rightarrow \cos \dfrac{{2\pi }}{3} = - \cos \left( {\dfrac{\pi }{3}} \right),
And we know that cos(π3)=12\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}, now substituting the value in the expression we get,
cos2π3=12\Rightarrow \cos \dfrac{{2\pi }}{3} = - \dfrac{1}{2},
So from the two methods we got the same value for cos2π3\cos \dfrac{{2\pi }}{3} i.e.,12 - \dfrac{1}{2}.