Solveeit Logo

Question

Question: How do you find the exact value of \[\cos \left( {\dfrac{{13\pi }}{{24}}} \right)\sin \left( {\dfrac...

How do you find the exact value of cos(13π24)sin(13π24)\cos \left( {\dfrac{{13\pi }}{{24}}} \right)\sin \left( {\dfrac{{13\pi }}{{24}}} \right) using the half angle formula?

Explanation

Solution

In the above question, we are given a trigonometric function as cos(13π24)sin(13π24)\cos \left( {\dfrac{{13\pi }}{{24}}} \right)\sin \left( {\dfrac{{13\pi }}{{24}}} \right) . We have to find the exact value of the given trigonometric function using a well known formula of trigonometry called the half angle formula. We can also use the similar formula called the double angle formula. The double and half angle formula respectively, are given as:
sin(2x)=2sinxcosx\sin \left( {2x} \right) = 2\sin x\cos x
and
sin(x2)=±1cosx2\sin \left( {\dfrac{x}{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos x}}{2}}

Complete step by step answer:
Given trigonometric function is
cos(13π24)sin(13π24)\Rightarrow \cos \left( {\dfrac{{13\pi }}{{24}}} \right)\sin \left( {\dfrac{{13\pi }}{{24}}} \right)
We have to find the exact value of the above given trigonometric function.
Using the double angle identity of trigonometry, since we have we can also write the above function as,
sin(2x)=2sinxcosx\Rightarrow \sin \left( {2x} \right) = 2\sin x\cos x
Hence, we can write it as
sinxcosx=12sin(2x)\Rightarrow \sin x\cos x = \dfrac{1}{2}\sin \left( {2x} \right)
Now putting x=13π24x = \dfrac{{13\pi }}{{24}} in the above obtained equation, we get
sin(13π24)cos(13π24)=12sin(213π24)\Rightarrow \sin \left( {\dfrac{{13\pi }}{{24}}} \right)\cos \left( {\dfrac{{13\pi }}{{24}}} \right) = \dfrac{1}{2}\sin \left( {2 \cdot \dfrac{{13\pi }}{{24}}} \right)
We can also write the above equation as,
cos(13π24)sin(13π24)=12sin(13π12)\Rightarrow \cos \left( {\dfrac{{13\pi }}{{24}}} \right)\sin \left( {\dfrac{{13\pi }}{{24}}} \right) = \dfrac{1}{2}\sin \left( {\dfrac{{13\pi }}{{12}}} \right) ...(1)
Now consider sin(13π12)\sin \left( {\dfrac{{13\pi }}{{12}}} \right) , we can write it as
sin(13π12)=sin(π+π12)\Rightarrow \sin \left( {\dfrac{{13\pi }}{{12}}} \right) = \sin \left( {\pi + \dfrac{\pi }{{12}}} \right)
That gives,
sin(13π12)=sin(π12)\Rightarrow \sin \left( {\dfrac{{13\pi }}{{12}}} \right) = - \sin \left( {\dfrac{\pi }{{12}}} \right)
We can also write it as,
sin(13π12)=sin(π/62)\Rightarrow \sin (\dfrac{13\pi}{12})= -\sin (\dfrac{\pi/6}{2}) ...(2)
Now from the half angle identity, we have
sin(x2)=±1cosx2\Rightarrow \sin \left( {\dfrac{x}{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos x}}{2}}
Since, π6\dfrac{\pi }{6} lies in the first quadrant and sine function is positive in the first quadrant, therefore we can take the positive sign in the half angle identity while putting x=π6x = \dfrac{\pi }{6} .
Therefore, we have
sin(π/62)=1cos(π/6)2\sin (\dfrac{\pi/6}{2}) = \sqrt{\dfrac{1-\cos (\pi/6)}{2}}
Now since cos(π6)=32cos\left( {\dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 }}{2} , that gives,
sin(π/62)=1322\sin (\dfrac{\pi/6}{2})= \sqrt{\dfrac{1-\dfrac{\sqrt 3}{2}}{2}}
sin(π/62)=234\sin (\dfrac{\pi/6}{2}) = \sqrt {\dfrac{{2 - \sqrt 3 }}{4}}
Therefore, we get
sin(π/62)=1223\sin (\dfrac{\pi/6}{2}) = \dfrac{1}{2} \sqrt {2-\sqrt 3}
Substituting this value in equation (2), we have
sin(13π12)=sin(π/62)\sin (\dfrac{13\pi}{12})=-\sin (\dfrac{\pi/6}{2})
Hence,
sin(13π12)=1223\Rightarrow \sin \left( {\dfrac{{13\pi }}{{12}}} \right) = - \dfrac{1}{2}\sqrt {2 - \sqrt 3 }
Again, putting sin(13π12)=1223\sin \left( {\dfrac{{13\pi }}{{12}}} \right) = - \dfrac{1}{2}\sqrt {2 - \sqrt 3 } in equation (1), we have
cos(13π24)sin(13π24)=12sin(13π12)\Rightarrow \cos \left( {\dfrac{{13\pi }}{{24}}} \right)\sin \left( {\dfrac{{13\pi }}{{24}}} \right) = \dfrac{1}{2}\sin \left( {\dfrac{{13\pi }}{{12}}} \right)
Hence,
cos(13π24)sin(13π24)=12(1223)\Rightarrow \cos \left( {\dfrac{{13\pi }}{{24}}} \right)\sin \left( {\dfrac{{13\pi }}{{24}}} \right) = \dfrac{1}{2} \cdot \left( { - \dfrac{1}{2}\sqrt {2 - \sqrt 3 } } \right)
Therefore, we get
cos(13π24)sin(13π24)=1423\Rightarrow \cos \left( {\dfrac{{13\pi }}{{24}}} \right)\sin \left( {\dfrac{{13\pi }}{{24}}} \right) = - \dfrac{1}{4}\sqrt {2 - \sqrt 3 }
That is the required solution.
Therefore, the exact value of cos(13π24)sin(13π24)\cos \left( {\dfrac{{13\pi }}{{24}}} \right)\sin \left( {\dfrac{{13\pi }}{{24}}} \right) is 1423- \dfrac{1}{4}\sqrt {2 - \sqrt 3 }.

Note:
Sometimes the double angle formula and the half angle formula is also written in their other forms where 2x2x is replaced by its half, i.e. xx and x2\dfrac{x}{2} is replaced by its double, i.e. xx .
Their other forms are written as the following identities:
sin(2x)=2sinxcosx\Rightarrow \sin \left( {2x} \right) = 2\sin x\cos x
Hence,
sinx=2sinx2cosx2\Rightarrow \sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}
Similarly,
sin(x2)=±1cosx2\Rightarrow \sin \left( {\dfrac{x}{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos x}}{2}}
Therefore,
sinx=±1cos2x2\Rightarrow \sin x = \pm \sqrt {\dfrac{{1 - \cos 2x}}{2}}
Ultimately, we have
sinx=2sinx2cosx2=±1cos2x2\Rightarrow \sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 - \cos 2x}}{2}}