Solveeit Logo

Question

Question: How do you find the exact value of \( \cos \left( \arcsin \left( \dfrac{1}{3} \right) \right) \) ?...

How do you find the exact value of cos(arcsin(13))\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right) ?

Explanation

Solution

Hint : We explain the function arcsin(x)\arcsin \left( x \right) . We express the inverse function of tan in the form of arcsin(x)=sin1x\arcsin \left( x \right)={{\sin }^{-1}}x . We draw the graph of arcsin(x)\arcsin \left( x \right) and the line x=13x=\dfrac{1}{3} to find the intersection point. Thereafter we take the cos ratio of that angle to find the solution.

Complete step-by-step answer :
The given expression is the inverse function of trigonometric ratio sin.
The arcus function represents the angle which on ratio tan gives the value.
So, arcsin(x)=sin1x\arcsin \left( x \right)={{\sin }^{-1}}x . If arcsin(x)=α\arcsin \left( x \right)=\alpha then we can say sinα=x\sin \alpha =x .
Each of the trigonometric functions is periodic in the real part of its argument, running through all its values twice in each interval of 2π2\pi .
The general solution for that value where sinα=x\sin \alpha =x will be nπ+(1)nα,nZn\pi +{{\left( -1 \right)}^{n}}\alpha ,n\in \mathbb{Z} .
But for arcsin(x)\arcsin \left( x \right) , we won’t find the general solution. We use the principal value. For ratios sin we have π2arcsin(x)π2-\dfrac{\pi }{2}\le \arcsin \left( x \right)\le \dfrac{\pi }{2} .
The graph of the function is
We now place the value of x=13x=\dfrac{1}{3} in the function of arcsin(x)\arcsin \left( x \right) .
Let the angle be θ\theta for which arcsin(13)=θ\arcsin \left( \dfrac{1}{3} \right)=\theta . This gives sinθ=13\sin \theta =\dfrac{1}{3} .
The value of θ\theta for which sinθ\sin \theta is 13\dfrac{1}{3} is 19.47 degree..
Now we take cos(arcsin(13))=cos(19.47)=83\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\cos \left( {{19.47}^{\circ }} \right)=\dfrac{\sqrt{8}}{3} .
Therefore, the value of cos(arcsin(13))\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right) is 83\dfrac{\sqrt{8}}{3} .
So, the correct answer is “83\dfrac{\sqrt{8}}{3} ”.

Note : We can also apply the trigonometric image form to get the value of cos(arcsin(13))\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right) .
It’s given that sinθ=13\sin \theta =\dfrac{1}{3} and we need to find cosθ\cos \theta . We know cosθ=1sin2θ\cos \theta =\sqrt{1-{{\sin }^{2}}\theta } .
Putting the values, we get cosθ=1sin2θ=1(13)2=83\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }=\sqrt{1-{{\left( \dfrac{1}{3} \right)}^{2}}}=\dfrac{\sqrt{8}}{3} .