Solveeit Logo

Question

Question: How do you find the exact value of \[\arcsin \left( { - \dfrac{1}{2}} \right)\]....

How do you find the exact value of arcsin(12)\arcsin \left( { - \dfrac{1}{2}} \right).

Explanation

Solution

he arcsinx\arcsin x is the inverse trigonometric function of sinx\sin x . Sin\operatorname{Sin} Function is a periodic function with a period of 2π2\pi , the domain of sin\sin function is defined in the interval of (,)\left( { - \infty ,\infty } \right) and the range ofsin\sin function is [1,1]\left[ { - 1,1} \right] . Sin\operatorname{Sin} is an odd function which means its graph will be symmetric about origin. An odd function is defined as a function which is symmetric about the origin. The mathematical expression for odd function is defined as f(x)+f(x)=0f\left( { - x} \right) + f\left( x \right) = 0 , the xx - intercept of sin\sin function is nπn\pi ,where kk is an integer and the yy - intercept of the function is 0 .The maximum points of the function are (π2+2nπ,1)\left( {\dfrac{\pi }{2} + 2n\pi ,1} \right) where nn is an integer and the minimum points of the function are (3π2+2nπ,1)\left( {\dfrac{{3\pi }}{2} + 2n\pi , - 1} \right) where kk is an integer. To find the exact value of inverse trigonometric function we will use trigonometric ratios for standard angles. The range of the arcsin\arcsin or sin1x{\sin ^{ - 1}}x is (π2,π2)\left( {\dfrac{\pi }{2}, - \dfrac{\pi }{2}} \right) . The arcsin\arcsin of a positive value is found in first quadrant or zero to π2\dfrac{\pi }{2} and arcsin\arcsin of a negative value is zero to π2 - \dfrac{\pi }{2} .

Complete step by step answer:
Step: 1 consider the given function,
arcsin\arcsin (12)=\left( { - \dfrac{1}{2}} \right) = xx
Use the inverse trigonometry properties to write the equation in inverse form.
sin1(12)=x\Rightarrow {\sin ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = x
Take sine function to the both side of equation,
sin(sin1(12))=sinx\sin \left( {{{\sin }^{ - 1}}\left( { - \dfrac{1}{2}} \right)} \right) = \sin x
Step: 2 use the property of inverse trigonometry to solve the equation,
sinx=12\Rightarrow \sin x = - \dfrac{1}{2}
Since the sine function is odd function,
sin(x)=sinx\Rightarrow \sin \left( { - x} \right) = - \sin x
sinx=sin(30) x=30  \Rightarrow \sin x = \sin \left( { - {{30}^ \circ }} \right) \\\ \Rightarrow x = - {30^ \circ } \\\
Step: 3 convert the degree form of angle into radian by multiplying π180\dfrac{\pi }{{180}}.
x=30×π180 x=π6  \Rightarrow x = - 30 \times \dfrac{\pi }{{180}} \\\ \Rightarrow x = - \dfrac{\pi }{6} \\\
Therefore, the exact value of the inverse trigonometric function is π6 - \dfrac{\pi }{6}

Note: The inverse of a trigonometric function is represented as the arc of the trigonometric function. To find the exact value of inverse trigonometric function, use the standard value of the trigonometric ratios. Convert the degree of angle into radian by multiplying with π180\dfrac{\pi }{{180}} .