Solveeit Logo

Question

Question: How do you find the exact value of \(arc\cos \left( -\dfrac{1}{\sqrt{2}} \right)\)?...

How do you find the exact value of arccos(12)arc\cos \left( -\dfrac{1}{\sqrt{2}} \right)?

Explanation

Solution

We explain the function arccos(x)\arccos \left( x \right). We express the inverse function of cos in the form of arccos(x)=cos1x\arccos \left( x \right)={{\cos }^{-1}}x. We draw the graph of arccos(x)\arccos \left( x \right) and the line x=12x=-\dfrac{1}{\sqrt{2}} to find the intersection point as the solution.

Complete step by step answer:
The given expression is the inverse function of trigonometric ratio cos.
The arcus function represents the angle which on ratio cos gives the value.
So, arccos(x)=cos1x\arccos \left( x \right)={{\cos }^{-1}}x. If arccos(x)=cos1x=α\arccos \left( x \right)={{\cos }^{-1}}x=\alpha then we can say cosα=x\cos \alpha =x.
Each of the trigonometric functions is periodic in the real part of its argument, running through all its values twice in each interval of 2π2\pi .
The general solution for that value where cosα=x\cos \alpha =x will be 2nπ±α,nZ2n\pi \pm \alpha ,n\in \mathbb{Z}.
But for arccos(x)\arccos \left( x \right), we won’t find the general solution. We use the principal value. For ratio tan we have 0arccos(x)π0\le \arccos \left( x \right)\le \pi .
The graph of the function is

arccos(x)=cos1x=α\arccos \left( x \right)={{\cos }^{-1}}x=\alpha gives the angle α\alpha behind the ratio.
We now place the value of x=12x=-\dfrac{1}{\sqrt{2}} in the function of arccos(x)\arccos \left( x \right).
Let the angle be θ\theta for which arccos(12)=θarc\cos \left( -\dfrac{1}{\sqrt{2}} \right)=\theta . This gives cosθ=12\cos \theta =-\dfrac{1}{\sqrt{2}}.
We know that cosθ=12=cos(π2+π4)\cos \theta =-\dfrac{1}{\sqrt{2}}=\cos \left( \dfrac{\pi }{2}+\dfrac{\pi }{4} \right) which gives θ=(π2+π4)=3π4\theta =\left( \dfrac{\pi }{2}+\dfrac{\pi }{4} \right)=\dfrac{3\pi }{4}
For this we take the line of x=12x=-\dfrac{1}{\sqrt{2}} and see the intersection of the line with the graph arccos(x)\arccos \left( x \right).

We get the value of y coordinates as 3π4\dfrac{3\pi }{4}

Note: If we are finding an arccos(x)\arccos \left( x \right) of a positive value, the answer is between 0arccos(x)π20\le \arccos \left( x \right)\le \dfrac{\pi }{2}. If we are finding the arccos(x)\arccos \left( x \right) of a negative value, the answer is between π2arccos(x)π\dfrac{\pi }{2}\le \arccos \left( x \right)\le \pi .