Solveeit Logo

Question

Question: How do you find the exact minimum value of \(f\left( x \right) = {e^x} + {e^{ - 2x}}\) on \(\left[ {...

How do you find the exact minimum value of f(x)=ex+e2xf\left( x \right) = {e^x} + {e^{ - 2x}} on [0,1]\left[ {0,1} \right]?

Explanation

Solution

First, we have to find the differentiation of ff with respect to xx using differentiation rules. Next, find all critical points of ff in the interval, i.e., find points xx where either f(x)=0f'\left( x \right) = 0 or ff is not differentiable using exponential and logarithm properties. Next, evaluate the value of ff at critical points and at the end points of the interval [0,1]\left[ {0,1} \right]. Next, identify the minimum value of ff out of the values calculated. The minimum value will be the absolute minimum (least) value of ff.
If f(x)f\left( x \right)and g(x)g\left( x \right)are differentiable functions and c is a constant.
1. dxndx=nxn1\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}
2. d(c)dx=0\dfrac{{d\left( c \right)}}{{dx}} = 0
3. \dfrac{d}{{dx}}\left\\{ {c \cdot f\left( x \right)} \right\\} = c \times \dfrac{d}{{dx}}\left( {f\left( x \right)} \right)
4. ddx[f(x)g(x)]=f(x)ddxg(x)+g(x)ddxf(x)\dfrac{d}{{dx}}\left[ {f\left( x \right) \cdot g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) + g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)
5. ddx[f(x)±g(x)]=ddxf(x)±ddxg(x)\dfrac{d}{{dx}}\left[ {f\left( x \right) \pm g\left( x \right)} \right] = \dfrac{d}{{dx}}f\left( x \right) \pm \dfrac{d}{{dx}}g\left( x \right)
6. ddx(ex)=ex\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}

Complete step by step answer:
Given function is f(x)=ex+e2xf\left( x \right) = {e^x} + {e^{ - 2x}}.
We have to find the exact minimum value of f(x)=ex+e2xf\left( x \right) = {e^x} + {e^{ - 2x}} on [0,1]\left[ {0,1} \right].
First, we have to find the differentiation of ff with respect to xx.
So, differentiating ff with respect to xx, we get
ddx(f(x))=ddx(ex+e2x)\dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {{e^x} + {e^{ - 2x}}} \right)
Use the property ddx[f(x)±g(x)]=ddxf(x)±ddxg(x)\dfrac{d}{{dx}}\left[ {f\left( x \right) \pm g\left( x \right)} \right] = \dfrac{d}{{dx}}f\left( x \right) \pm \dfrac{d}{{dx}}g\left( x \right) in above equation where f(x)f\left( x \right)and g(x)g\left( x \right)are differentiable functions.
f(x)=ddx(ex)+ddx(e2x)\Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left( {{e^x}} \right) + \dfrac{d}{{dx}}\left( {{e^{ - 2x}}} \right)
Use the property ddx(ex)=ex\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x} in above equation.
f(x)=ex+e2xddx(2x)\Rightarrow f'\left( x \right) = {e^x} + {e^{ - 2x}}\dfrac{d}{{dx}}\left( { - 2x} \right)
Use the property \dfrac{d}{{dx}}\left\\{ {c \cdot f\left( x \right)} \right\\} = c \times \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) in above equation where f(x)f\left( x \right)is a differentiable function and c is a constant.
f(x)=ex2e2xddx(x)\Rightarrow f'\left( x \right) = {e^x} - 2{e^{ - 2x}}\dfrac{d}{{dx}}\left( x \right)
Use the property dxndx=nxn1\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}} in above equation where f(x)f\left( x \right)is a differentiable function.
f(x)=ex2e2x\Rightarrow f'\left( x \right) = {e^x} - 2{e^{ - 2x}}
Now, find all critical points of ff in the interval, i.e., find points xx where either f(x)=0f'\left( x \right) = 0 or ff is not differentiable.
So, put f(x)=0f'\left( x \right) = 0, we get
ex2e2x=0{e^x} - 2{e^{ - 2x}} = 0
ex=2e2x{e^x} = \dfrac{2}{{{e^{2x}}}}
Now, use the property ea+b=eaeb{e^{a + b}} = {e^a}{e^b} in the above equation.
e3x=2{e^{3x}} = 2
Take logarithm on both sides of the equation.
ln(e3x)=ln(2)\ln \left( {{e^{3x}}} \right) = \ln \left( 2 \right)
Use property ln(mn)=nln(m)\ln \left( {{m^n}} \right) = n\ln \left( m \right) and ln(e)=1\ln \left( e \right) = 1 in above equation.
3xln(e)=ln(2)3x\ln \left( e \right) = \ln \left( 2 \right)
x=ln(2)3\Rightarrow x = \dfrac{{\ln \left( 2 \right)}}{3}
or x=ln23x = \ln \sqrt[3]{2}
Thus, x=ln23x = \ln \sqrt[3]{2} is a critical point of ff.
Now, we have to evaluate the value of ff at critical point and at the end points of the interval [0,1]\left[ {0,1} \right],
i.e., at x=0x = 0, x=ln23x = \ln \sqrt[3]{2} and x=1x = 1
f(0)=e0+e2×0=1+1=2f\left( 0 \right) = {e^0} + {e^{ - 2 \times 0}} = 1 + 1 = 2
f(ln23)=eln23+e2×ln23=23+eln1(23)2=23+1(23)2=23+143=1.889881575f\left( {\ln \sqrt[3]{2}} \right) = {e^{\ln \sqrt[3]{2}}} + {e^{ - 2 \times \ln \sqrt[3]{2}}} = \sqrt[3]{2} + {e^{\ln \dfrac{1}{{{{\left( {\sqrt[3]{2}} \right)}^2}}}}} = \sqrt[3]{2} + \dfrac{1}{{{{\left( {\sqrt[3]{2}} \right)}^2}}} = \sqrt[3]{2} + \dfrac{1}{{\sqrt[3]{4}}} = 1.889881575
f(1)=e1+e2×1=e+1e2=2.853617112f\left( 1 \right) = {e^1} + {e^{ - 2 \times 1}} = e + \dfrac{1}{{{e^2}}} = 2.853617112
Now, identify the maximum and minimum values of ff out of the values calculated. The maximum value will be the absolute maximum (greatest) value of ff and the minimum value will be the absolute minimum (least) value of ff.
The absolute maximum value of ff on [0,1]\left[ {0,1} \right] is 2.8536171122.853617112, occurring at x=1x = 1, and absolute minimum value of ff on [0,1]\left[ {0,1} \right] is 1.8898815751.889881575 which occurs at x=ln23x = \ln \sqrt[3]{2}.

Therefore, the exact minimum value of f(x)=ex+e2xf\left( x \right) = {e^x} + {e^{ - 2x}} on [0,1]\left[ {0,1} \right] is 23+143\sqrt[3]{2} + \dfrac{1}{{\sqrt[3]{4}}} or 1.8898815751.889881575.

Note: Algorithm for finding the maximum and the minimum values of a function in a closed interval.
Step 1: Find all critical points ff in the interval, i.e., find points xx where either f(x)=0f'\left( x \right) = 0 or ff is not differentiable.
Step 2: Take the end points of the interval.
Step 3: At all these points (listed in Step 1 and 2), calculate the values of ff.
Step 4: Identify the maximum and minimum values of ff out of the values calculated in Step 3. The maximum value will be the absolute maximum (greatest) value of ff and the minimum value will be the absolute minimum (least) value of ff.