Solveeit Logo

Question

Question: How do you find the exact functional value \(\tan 345\) using the cosine sum or difference identity?...

How do you find the exact functional value tan345\tan 345 using the cosine sum or difference identity?

Explanation

Solution

Apply the sum and difference Trigonometric identities to find the exact functional value.
Here write tan345\tan 345 into two parts mean tan(145+180)\tan \left( 145+180 \right)
Use the formula for sin(ab)=sina.cosbsinb.cosa\sin \left( a-b \right)=\sin a.\cos b-\sin b.\cos a
For solving the problem and cos(ab)=cosa.cosb+sina.sinb\cos \left( a-b \right)=\cos a.\cos b+\sin a.\sin b

Complete step by step solution: As per given problem trigonometric function is tan345\tan 345 Now, we have to split 345'345' into two parts in the form of addition by adding any two numbers whose addition should be 345345{}^\circ
tan345=tan(165+180)\therefore \tan 345{}^\circ =\tan \left( 165{}^\circ +180{}^\circ \right)
=tan(165)=\tan \left( 165{}^\circ \right)
Neglecting tan(180)\tan \left( 180{}^\circ \right) because the solution of tan(180)=sin(180)cos(180)\tan \left( 180{}^\circ \right)=\dfrac{\sin \left( 180{}^\circ \right)}{\cos \left( 180{}^\circ \right)}
It comes from the trigonometric identity,
tanθ=sinθcosθ=0\tan \theta =\dfrac{\sin \theta }{\cos \theta }=0
Value of sin(180)\sin \left( 180{}^\circ \right) is equal to 00 and value of cos(180)\cos \left( 180{}^\circ \right) is 1-1
tan(180)=01\tan \left( 180{}^\circ \right)=\dfrac{0}{-1}
tan(180)=0\tan \left( 180{}^\circ \right)=0
Therefore neglect tan(180)\tan \left( 180{}^\circ \right) and solve tan(165)\tan \left( 165{}^\circ \right)
tan(165)=15tandegree=tan15\tan \left( 165{}^\circ \right)=-15\tan \text{degree}=-\tan 15{}^\circ
Here again apply the formula of tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta }
Therefore,
tan345=tan15=sin15cos15...(ii)\tan 345{}^\circ =-\tan 15{}^\circ =\dfrac{-\sin 15{}^\circ }{\cos 15{}^\circ }...(ii)
From the above 1st{{1}^{st}} equation, firstly solve the numerator,
sin(15)\therefore \sin \left( 15{}^\circ \right)
Split 1515{}^\circ into two parts whose solution will be 1515{}^\circ after subtracting.
sin(15)=sin(4530)\therefore \sin \left( 15{}^\circ \right)=\sin \left( 45{}^\circ -30{}^\circ \right)
This sin(4530)\sin \left( 45{}^\circ -30{}^\circ \right) is applicable to the trigonometric identity which is.
sin(ab)=sina.cosbsinb.cosa\sin \left( a-b \right)=\sin a.\cos b-\sin b.\cos a
Here, a=45a=45{}^\circ
b=30b=30{}^\circ
Apply trigonometric identity.
sin(15)=(sin4530)=sin45.cos30sin30.cos45\sin \left( 15{}^\circ \right)=\left( \sin 45{}^\circ -30{}^\circ \right)=\sin 45.\cos 30-\sin 30.\cos 45
=(22).(32)(12).(22)=\left( \dfrac{\sqrt{2}}{2} \right).\left( \dfrac{\sqrt{3}}{2} \right)-\left( \dfrac{1}{2} \right).\left( \dfrac{\sqrt{2}}{2} \right)
This above value is written from a trigonometric function table.
Simplify the above equation.
=(64)(24)=\left( \dfrac{\sqrt{6}}{4} \right)-\left( \dfrac{\sqrt{2}}{4} \right)
sin(15)=624\therefore \sin \left( 15{}^\circ \right)=\dfrac{\sqrt{6}-\sqrt{2}}{4}
Solve denominator of 1st{{1}^{st}} equation, which is cos(15)\cos \left( 15{}^\circ \right) which can also be written as,
cos(4530)\cos \left( 45{}^\circ -30{}^\circ \right)
Here, apply cos(ab)=cosa.cosb+sina.sinb\cos \left( a-b \right)=\cos a.\cos b+\sin a.\sin b trigonometric identity.
cos(15)=cos(4530)=cos45.cos30+sin45sin30\cos \left( 15{}^\circ \right)=\cos \left( 45{}^\circ -30{}^\circ \right)=\cos 45{}^\circ .\cos 30{}^\circ +\sin 45{}^\circ -\sin 30{}^\circ
=(22).(32)+(22).(12)=\left( \dfrac{\sqrt{2}}{2} \right).\left( \dfrac{\sqrt{3}}{2} \right)+\left( \dfrac{\sqrt{2}}{2} \right).\left( \dfrac{1}{2} \right)
Multiplying and adding above value.
=(64)+(24)=\left( \dfrac{\sqrt{6}}{4} \right)+\left( \dfrac{\sqrt{2}}{4} \right)
cos(15)=6+24\cos \left( 15{}^\circ \right)=\dfrac{\sqrt{6}+\sqrt{2}}{4}
Denominators can be written any 1'1' time as the denominator is common.
From equation 1st{{1}^{st}}
tan345=tan15=sin15cos15\tan 345{}^\circ =-\tan 15{}^\circ =\dfrac{-\sin 15{}^\circ }{\cos 15{}^\circ }
=624=\dfrac{\sqrt{6}-\sqrt{2}}{4}
=6+24=\dfrac{\sqrt{6}+\sqrt{2}}{4}
=624×46+2=\dfrac{\sqrt{6}-\sqrt{2}}{4}\times \dfrac{4}{\sqrt{6}+\sqrt{2}}
Here, denominator comes in multiplication with numerator and as per the rule denominator will be reciprocal and 4'4' in division and 4'4' in multiplication will get canceled.
Therefore,
tan345=626+2\tan 345{}^\circ =\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}

Additional Information:
The main sum and difference trigonometric identities are following.
(1) cos(ab)=cosa.cosb+sina.sinb\cos \left( a-b \right)=\cos a.\cos b+\sin a.\sin b
(2) cos(a+b)=cosa.cosbsina.sinb\cos \left( a+b \right)=\cos a.\cos b-\sin a.\sin b
(3) sin(a+b)=sina.cosb+sinb.cosa\sin \left( a+b \right)=\sin a.\cos b+\sin b.\cos a
(4) sina(a+b)=sina.cosb+sinb.cosa\sin a\left( a+b \right)=\sin a.\cos b+\sin b.\cos a
(5) tan(ab)=tanatanb1+tana.tanb\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a.\tan b}
(6) tan(a+b)=tana+tanb1tana.tanb\tan \left( a+b \right)=\dfrac{\tan a+\tan b}{1-\tan a.\tan b}
Here is one example which is applicable to sum and difference trigonometric identities.
Here is one example which is applicable to sum and difference trigonometric identities.
(1) find sin2a\sin 2a
=sin(a+a)=\sin \left( a+a \right) split into two parts, Apply the sum or difference trigonometric identity.
i.e. sin(a+b)=sina.cosb+sinb.cosa\sin \left( a+b \right)=\sin a.\cos b+\sin b.\cos a
sin2a=sin(a+a)\because \sin 2a=\sin \left( a+a \right)
=sina.cosa+sina.cosa=\sin a.\cos a+\sin a.\cos a
sin2a=2.(sina.cosa)\sin 2a=2.\left( \sin a.\cos a \right)

Note:
Always remember while applying sum and difference identities in the function split the value of degree into two points for saving sometimes.
Apply the trigonometric identities such as tanθ=sinθcosθ,sinθ=1cosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta },\sin \theta =\dfrac{1}{\cos \theta }
Where applicable,
Remember the value of trigonometric function angle such as sin60=32\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}
sec30=23\sec 30{}^\circ =\dfrac{2}{\sqrt{3}}, etc.