Solveeit Logo

Question

Question: How do you find the exact functional value \(\tan \left( {\dfrac{{ - 5\pi }}{{12}}} \right)\)using c...

How do you find the exact functional value tan(5π12)\tan \left( {\dfrac{{ - 5\pi }}{{12}}} \right)using cosine sum or difference identity?

Explanation

Solution

In order to determine the exact value of tan(5π12)\tan \left( {\dfrac{{ - 5\pi }}{{12}}} \right), first find out the value oftan(5π12)\tan \left( {\dfrac{{5\pi }}{{12}}} \right)by splitting the angle 5π12\dfrac{{5\pi }}{{12}}as π6+π4\dfrac{\pi }{6} + \dfrac{\pi }{4} . Now apply the sum of angle formula of tangent tan(A+B)=tanA+tanB1tanAtanB\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} to find the value oftan(5π12)\tan \left( {\dfrac{{5\pi }}{{12}}} \right). Now using the property of tangent as tan(θ)=tan(θ)\tan \left( { - \theta } \right) = - \tan \left( \theta \right),you’ll get your required result.

Formula Used:
(A+B)2=A2+B2+2AB{\left( {A + B} \right)^2} = {A^2} + {B^2} + 2AB
tan(A+B)=tanA+tanB1tanAtanB\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
(ab)(a+b)=a2b2(a - b)(a + b) = {a^2} - {b^2}

Complete step-by-step solution:
In order the find the exact value of tan(5π12)\tan \left( {\dfrac{{ - 5\pi }}{{12}}} \right), We will be first finding the value of tan(5π12)\tan \left( {\dfrac{{5\pi }}{{12}}} \right)and to do so we have to find the two angles whose either Sum or difference is 5π12\dfrac{{5\pi }}{{12}}
We only know the exact value of tangent at angles 0,π6,π4,π3,π20,\dfrac{\pi }{6},\dfrac{\pi }{4},\dfrac{\pi }{3},\dfrac{\pi }{2}.
Now have to find such combination of two angles from the above angles, so that the sum or difference is a 5π12\dfrac{{5\pi }}{{12}}.
We can write 5π12\dfrac{{5\pi }}{{12}}as π6+π4\dfrac{\pi }{6} + \dfrac{\pi }{4}
SO we get
tan(5π12)=tan(π6+π4)\Rightarrow \tan \left( {\dfrac{{5\pi }}{{12}}} \right) = \tan \left( {\dfrac{\pi }{6} + \dfrac{\pi }{4}} \right)
Now Using sum of angle formula for tangent as tan(A+B)=tanA+tanB1tanAtanB\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}},by considering A as π6\dfrac{\pi }{6}and B as π4\dfrac{\pi }{4}.
We get,
tan(π6+π4)=tan(π6)+tan(π4)1tan(π6)tan(π4)\Rightarrow \tan \left( {\dfrac{\pi }{6} + \dfrac{\pi }{4}} \right) = \dfrac{{\tan \left( {\dfrac{\pi }{6}} \right) + \tan \left( {\dfrac{\pi }{4}} \right)}}{{1 - \tan \left( {\dfrac{\pi }{6}} \right)\tan \left( {\dfrac{\pi }{4}} \right)}}
Since, As we know tan(π6)=33\tan \left( {\dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 }}{3}and tan(π4)=1\tan \left( {\dfrac{\pi }{4}} \right) = 1.Putting these values in the above equation we get
1+331(33)(1)\Rightarrow \dfrac{{1 + \dfrac{{\sqrt 3 }}{3}}}{{1 - \left( {\dfrac{{\sqrt 3 }}{3}} \right)\left( 1 \right)}}
To simplify the above, multiply and divide the above equation with 1+331 + \dfrac{{\sqrt 3 }}{3}, we get
1+33133×1+331+33 (1+33)2(133)(1+33)  \Rightarrow \dfrac{{1 + \dfrac{{\sqrt 3 }}{3}}}{{1 - \dfrac{{\sqrt 3 }}{3}}} \times \dfrac{{1 + \dfrac{{\sqrt 3 }}{3}}}{{1 + \dfrac{{\sqrt 3 }}{3}}} \\\ \Rightarrow \dfrac{{{{\left( {1 + \dfrac{{\sqrt 3 }}{3}} \right)}^2}}}{{\left( {1 - \dfrac{{\sqrt 3 }}{3}} \right)\left( {1 + \dfrac{{\sqrt 3 }}{3}} \right)}} \\\
Now apply the formula of (A+B)2=A2+B2+2AB{\left( {A + B} \right)^2} = {A^2} + {B^2} + 2ABin the numerator to expand and rewrite the denominator using identity (AB)(A+B)=A2B2\left( {A - B} \right)\left( {A + B} \right) = {A^2} - {B^2}. We get our equation as

1+233+13113 233+4323 32×(233+43) 636+126 \Rightarrow \dfrac{{1 + \dfrac{{2\sqrt 3 }}{3} + \dfrac{1}{3}}}{{1 - \dfrac{1}{3}}} \\\ \Rightarrow \dfrac{{\dfrac{{2\sqrt 3 }}{3} + \dfrac{4}{3}}}{{\dfrac{2}{3}}} \\\ \Rightarrow \dfrac{3}{2}\times \left( {\dfrac{{2\sqrt 3 }}{3} + \dfrac{4}{3}} \right) \\\ \Rightarrow \dfrac{6 \sqrt{3}}{6} + \dfrac{12}{6}

Simplifying the above further we get
tan(5π12)=2+3\tan \left( {\dfrac{{5\pi }}{{12}}} \right) = 2 + \sqrt 3
Hence, we have obtained the value of tan(5π12)=2+3\tan \left( {\dfrac{{5\pi }}{{12}}} \right) = 2 + \sqrt 3
Using the property of tangent that tan(θ)=tan(θ)\tan \left( { - \theta } \right) = - \tan \left( \theta \right), we can write tan(5π12)\tan \left( {\dfrac{{ - 5\pi }}{{12}}} \right)as
tan(5π12)=(2+3)=23\Rightarrow \tan \left( {\dfrac{{ - 5\pi }}{{12}}} \right) = - \left( {2 + \sqrt 3 } \right) = - 2 - \sqrt 3

Therefore, the exact functional value of tan(5π12)\tan \left( {\dfrac{{ - 5\pi }}{{12}}} \right)is equal to 23- 2 - \sqrt 3.

Additional Information:
1. Periodic Function= A function f(x)f(x) is said to be a periodic function if there exists a real number T > 0 such that f(x+T)=f(x)f(x + T) = f(x) for all x.
If T is the smallest positive real number such that f(x+T)=f(x)f(x + T) = f(x) for all x, then T is called the fundamental period of f(x)f(x) .
Since sin(2nπ+θ)=sinθ\sin \,(2n\pi + \theta ) = \sin \theta for all values of θ\theta and n\inN.
2. Even Function – A function f(x)f(x) is said to be an even function ,if f(x)=f(x)f( - x) = f(x)for all x in its domain.
Odd Function – A function f(x)f(x) is said to be an even function ,if f(x)=f(x)f( - x) = - f(x)for all x in its domain.
We know that sin(θ)=sinθ.cos(θ)=cosθandtan(θ)=tanθ\sin ( - \theta ) = - \sin \theta .\cos ( - \theta ) = \cos \theta \,and\,\tan ( - \theta ) = - \tan \theta
Therefore,sinθ\sin \theta and tanθ\tan \theta and their reciprocals,cscθ\csc \theta and cotθ\cot \theta are odd functions whereas cosθ\cos \theta and its reciprocal secθ\sec \theta are even functions.

Note:
1. Trigonometry is one of the significant branches throughout the entire existence of mathematics and this idea is given by a Greek mathematician Hipparchus.
2.One must be careful while taking values from the trigonometric table and cross-check at least once to avoid any error in the answer.
3. Tangent is always positive in the 1st and 3rd quadrant and negative in 2nd and 4th quadrant.