Solveeit Logo

Question

Question: How do you find the exact functional value of \(\sin {75^ \circ }\) by using the cosine sum or diffe...

How do you find the exact functional value of sin75\sin {75^ \circ } by using the cosine sum or difference identity?

Explanation

Solution

We will use the cosine sum and difference formula to find the exact functional value of sin75\sin {75^ \circ }. So, here we will use sin(A+B)\sin \left( {A + B} \right) i.e., sine sum identity for sin(AB)\sin \left( {A - B} \right) i.e., sine difference identity which are defined as sinAcosB+cosAsinB\sin A\cos B + \cos A\sin B and sinAcosBcosAsinB\sin A\cos B - \cos A\sin B using one of these we will get the required value.

Complete Step by Step Solution:
We’ll solve this by using two methods one by using the sin sum identity and another by using the sine difference identity.
Method – 1: Using the sine sum identity:
We have to find the value of sin75\sin {75^ \circ }. So, we can also write sin75\sin {75^ \circ } as –
sin75=sin(45+30)\sin {75^ \circ } = \sin \left( {{{45}^ \circ } + {{30}^ \circ }} \right)
We know that, sine sum identity is –
sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B
Using the above identity for sin(45+30)\sin \left( {{{45}^ \circ } + {{30}^ \circ }} \right) , we get –
Here, A=45A = {45^ \circ } and B=30B = {30^ \circ }. Substituting these values in the identity, we get –
sin(45+30)=sin45cos30+cos45sin30\Rightarrow \sin \left( {45 + 30} \right) = \sin 45\cos 30 + \cos 45\sin 30
By using the specified sine and cosine angle i.e., sin45=12,cos30=32,cos45=12\sin 45 = \dfrac{1}{{\sqrt 2 }},\cos 30 = \dfrac{{\sqrt 3 }}{2},\cos 45 = \dfrac{1}{{\sqrt 2 }} and sin30=12\sin 30 = \dfrac{1}{2} , we get –
sin(75)=12.32+12.12\therefore \sin \left( {75} \right) = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2}
On simplification, we get –
sin75=322+122\Rightarrow \sin 75 = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} + \dfrac{1}{{2\sqrt 2 }}
Taking 222\sqrt 2 common from the denominator, we get –
sin75=3+122\Rightarrow \sin 75 = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}
Hence, the exact functional value of sin75\sin 75 is 3+122\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}.
Method – 2: Using the sine difference identity:
We have to find the value of sin75\sin {75^ \circ }. So, we can also write sin75\sin {75^ \circ } as –
sin75=sin(13560)\sin {75^ \circ } = \sin \left( {{{135}^ \circ } - {{60}^ \circ }} \right)
We know that, sine sum identity is –
sin(AB)=sinAcosBcosAsinB\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B
Using the above identity for sin(13560)\sin \left( {{{135}^ \circ } - {{60}^ \circ }} \right) , we get –
Here, A=135A = {135^ \circ } and B=60B = {60^ \circ }. Substituting these values in the identity, we get –
sin(135+60)=sin135cos60cos135sin60\Rightarrow \sin \left( {135 + 60} \right) = \sin 135\cos 60 - \cos 135\sin 60
By using the specified sine and cosine angle i.e., sin135=12,cos60=12,cos135=12\sin 135 = \dfrac{1}{{\sqrt 2 }},\cos 60 = \dfrac{1}{2},\cos 135 = \dfrac{{ - 1}}{{\sqrt 2 }} and sin60=32\sin 60 = \dfrac{{\sqrt 3 }}{2} , we get –
sin(75)=12.1212.32\therefore \sin \left( {75} \right) = \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2} - \dfrac{{ - 1}}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2}
On simplification, we get –
sin75=122+322\Rightarrow \sin 75 = \dfrac{1}{{2\sqrt 2 }} + \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}
Taking 222\sqrt 2 common from the denominator, we get –
sin75=1+322\Rightarrow \sin 75 = \dfrac{{1 + \sqrt 3 }}{{2\sqrt 2 }}

Hence, the exact functional value of sin75\sin 75 is 1+322\dfrac{{1 + \sqrt 3 }}{{2\sqrt 2 }}.

Note: The values of sine and cosine can be determined by using the other methods such as double angle formula, half-angle formula. In this question, we found the value of sin75\sin 75 by using the sine sum and difference formula. Here, we used the value of trigonometry ratios of standard angles. That’s why we can determine the solution to the question.