Solveeit Logo

Question

Question: How do you find the exact functional value of \(\sin 405^\circ + \sin 120^\circ \) using the cosine ...

How do you find the exact functional value of sin405+sin120\sin 405^\circ + \sin 120^\circ using the cosine sum or difference identity?

Explanation

Solution

Here we have to find the exact functional value of sin405+sin120\sin 405^\circ + \sin 120^\circ . To solve this trigonometric function first we will split each angle and then we will use the trigonometric identity sin(A+B)=sinAcosB+sinBcosA\sin (A + B) = \sin A\cos B + \sin B\cos A. After applying this trigonometric identity we will put the values of angles of sin\sin and cos\cos such as sin(360)=0,sin(45)=12,cos(360)=1,cos(45)=12\sin (360^\circ ) = 0,\,\,\sin (45^\circ ) = \dfrac{1}{{\sqrt 2 }},\,\,\cos (360^\circ ) = 1,\,\,\cos (45^\circ ) = \dfrac{1}{{\sqrt 2 }}.

Complete step by step answer:
To find the exact functional value of sin405+sin120\sin 405^\circ + \sin 120^\circ . We will split the angles in the angles whose values are known to us.So, we can write,
sin405=sin(360+45)\sin 405^\circ = \sin (360^\circ + 45^\circ )
We know that sin(A+B)=sinAcosB+sinBcosA\sin (A + B) = \sin A\cos B + \sin B\cos A

Using the above formula to evaluate the value of sin405\sin 405^\circ . We get,
sin(360+45)=sin360cos45+sin45cos360\sin (360^\circ + 45^\circ ) = \sin 360^\circ \cos 45^\circ + \sin 45^\circ \cos 360^\circ
We know that,
sin(360)=0,sin(45) sin(360)=12,cos(360) sin(360)=1,cos(45) sin(360)=12\sin (360^\circ ) = 0,\,\,\sin (45^\circ ) \\\ \Rightarrow \sin (360^\circ ) = \dfrac{1}{{\sqrt 2 }},\,\,\cos (360^\circ ) \\\ \Rightarrow \sin (360^\circ ) = 1,\,\,\cos (45^\circ ) \\\ \Rightarrow \sin (360^\circ ) = \dfrac{1}{{\sqrt 2 }}

Putting these values in the above equation. We get,
sin(360+45)=0×12+12×1\Rightarrow \sin (360^\circ + 45^\circ ) = 0 \times \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} \times 1
sin(360+45)=12\Rightarrow \sin (360^\circ + 45^\circ ) = \dfrac{1}{{\sqrt 2 }}
Rationalizing the above value. We get,
sin(360+45)=1×22×2 sin(360+45)=22\Rightarrow \sin (360^\circ + 45^\circ ) = \dfrac{{1 \times \sqrt 2 }}{{\sqrt 2 \times \sqrt 2 }} \\\ \Rightarrow \sin (360^\circ + 45^\circ ) = \dfrac{{\sqrt 2 }}{2}
Hence, the value of sin(405)=22\sin (405^\circ ) = \dfrac{{\sqrt 2 }}{2}

Now, we will evaluate the value of value of sin(120)\sin (120^\circ )
We can write sin(120)=sin(90+30)\sin (120^\circ ) = \sin (90^\circ + 30^\circ )
Therefore, sin(90+30)=sin90cos30+sin30cos90\sin (90^\circ + 30^\circ ) = \sin 90^\circ \cos 30^\circ + \sin 30^\circ \cos 90^\circ
We know that sin(90)=1,sin(30)=12,cos(90)=0,cos(30)=32\sin (90^\circ ) = 1,\,\,\sin (30^\circ ) = \dfrac{1}{2},\,\,\cos (90) = 0,\,\,\cos (30^\circ ) = \dfrac{{\sqrt 3 }}{2}

Putting these values in the above equation. We get,
\Rightarrow sin(90+30)=1×32+12×0\sin (90^\circ + 30^\circ ) = 1 \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \times 0
sin(90+30)=32\Rightarrow \sin (90^\circ + 30^\circ ) = \dfrac{{\sqrt 3 }}{2}
Hence, the value of sin(120)\sin (120^\circ ) =32 = \dfrac{{\sqrt 3 }}{2}
Now put the values of sin405\sin 405^\circ and sin(120)\sin (120^\circ ) in sin405+sin120\sin 405^\circ + \sin 120^\circ to calculate the exact value.
So, sin405+sin120=22+32\sin 405^\circ + \sin 120^\circ = \dfrac{{\sqrt 2 }}{2} + \dfrac{{\sqrt 3 }}{2}

Hence, sin405+sin120=2+32\sin 405^\circ + \sin 120^\circ = \dfrac{{\sqrt 2 + \sqrt 3 }}{2}.

Note: Some students are confused between trigonometric identities such as sin(A+B)\sin (A + B) and sinA+SinB\sin A + \operatorname{Sin} B. These both are different identities in one there is only a sum of angles and in second there is a sum of angles of sin\sin . In this question we can also use the identity sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) to find the exact value of the trigonometric function.