Solveeit Logo

Question

Question: How do you find the exact functional value of \(\sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \ci...

How do you find the exact functional value of sin110cos20cos110sin20\sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ } using the cosine sum or difference identity?

Explanation

Solution

This problem deals with trigonometric sum to product identities. Given an equation, we have to find the number of solutions of the equation. Which means that there are several solutions of the equation and hence we have to find the general solution of the equation. The formula used here is the trigonometric sum to product formula, which is given by:
sinC+sinD=2sin(C+D2)cos(CD2)\Rightarrow \sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)
sinCsinD=2cos(C+D2)sin(CD2)\Rightarrow \sin C - \sin D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{C - D}}{2}} \right)

Complete step-by-step solution:
From the above trigonometric sum to product formulas, we can rearrange the formulas in such a way that as shown below:
sinC+sinD=2sin(C+D2)cos(CD2)\Rightarrow \sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)
From here dividing the above equation by 2, gives:
12(sinC+sinD)=sin(C+D2)cos(CD2)\Rightarrow \dfrac{1}{2}\left( {\sin C + \sin D} \right) = \sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)
So the trigonometric product to sum identity becomes, as shown below:
sin(C+D2)cos(CD2)=12(sinC+sinD)\Rightarrow \sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) = \dfrac{1}{2}\left( {\sin C + \sin D} \right)
Similarly for the identity sinCsinD=2cos(C+D2)sin(CD2)\sin C - \sin D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{C - D}}{2}} \right), as shown below:
cos(C+D2)sin(CD2)=12(sinCsinD)\Rightarrow \cos \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{C - D}}{2}} \right) = \dfrac{1}{2}\left( {\sin C - \sin D} \right)
Given sin110cos20cos110sin20\sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ }, now consider the first part of the expression, as given below:
sin110cos20\Rightarrow \sin {110^ \circ }\cos {20^ \circ }
The above expression is in the form of sin(C+D2)cos(CD2)\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right), on comparing :
Here C+D2=110\dfrac{{C + D}}{2} = {110^ \circ } and CD2=20\dfrac{{C - D}}{2} = {20^ \circ }
Which gives C+D=220C + D = {220^ \circ } and CD=40C - D = {40^ \circ }, solving these two equations gives:
Hence C=130C = {130^ \circ } and D=90D = {90^ \circ }
Now applying the trigonometric product to sum identity to sin110cos20\sin {110^ \circ }\cos {20^ \circ }, as given below:
sin110cos20=12(sin130+sin90)\therefore \sin {110^ \circ }\cos {20^ \circ } = \dfrac{1}{2}\left( {\sin {{130}^ \circ } + \sin {{90}^ \circ }} \right)
Now consider the second part of the expression of sin110cos20cos110sin20\sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ }, as given below:
cos110sin20\Rightarrow \cos {110^ \circ }\sin {20^ \circ }
cos110sin20=12(sin130sin90)\therefore \cos {110^ \circ }\sin {20^ \circ } = \dfrac{1}{2}\left( {\sin {{130}^ \circ } - \sin {{90}^ \circ }} \right)
Now consider the given expression sin110cos20cos110sin20\sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ }, as given below:
sin110cos20cos110sin20=12(sin130+sin90)12(sin130sin90)\Rightarrow \sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ } = \dfrac{1}{2}\left( {\sin {{130}^ \circ } + \sin {{90}^ \circ }} \right) - \dfrac{1}{2}\left( {\sin {{130}^ \circ } - \sin {{90}^ \circ }} \right)
sin110cos20cos110sin20=12(sin130+sin90sin130+sin90)\Rightarrow \sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ } = \dfrac{1}{2}\left( {\sin {{130}^ \circ } + \sin {{90}^ \circ } - \sin {{130}^ \circ } + \sin {{90}^ \circ }} \right)
Here sin130\sin {130^ \circ } gets cancelled on the right hand side of the above equation, as given below:
sin110cos20cos110sin20=12(sin90+sin90)\Rightarrow \sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ } = \dfrac{1}{2}\left( {\sin {{90}^ \circ } + \sin {{90}^ \circ }} \right)
We know that sin90=1\sin {90^ \circ } = 1, hence substituting it in the above equation:
sin110cos20cos110sin20=12(1+1)\Rightarrow \sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ } = \dfrac{1}{2}\left( {1 + 1} \right)
sin110cos20cos110sin20=12(2)\Rightarrow \sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ } = \dfrac{1}{2}\left( 2 \right)
sin110cos20cos110sin20=1\therefore \sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ } = 1

The value of sin110cos20cos110sin20\sin {110^ \circ }\cos {20^ \circ } - \cos {110^ \circ }\sin {20^ \circ } is 1.

Note: While solving this problem, we need to understand that throughout the problem we used one of the trigonometric sum to product formula, there are totally four such trigonometric sum to product formulas, which are given by:
sinC+sinD=2sin(C+D2)cos(CD2)\Rightarrow \sin C + \sin D = 2\sin (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2})
sinCsinD=2cos(C+D2)sin(CD2)\Rightarrow \sin C - \sin D = 2\cos (\dfrac{{C + D}}{2})\sin (\dfrac{{C - D}}{2})
cosC+cosD=2cos(C+D2)cos(CD2)\Rightarrow \cos C + \cos D = 2\cos (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2})
cosCcosD=2sin(C+D2)sin(CD2)\Rightarrow \cos C - \cos D = - 2\sin (\dfrac{{C + D}}{2})\sin (\dfrac{{C - D}}{2})