Solveeit Logo

Question

Question: How do you find the exact functional value \[\cos \dfrac{{23\pi }}{{12}}\] using the cosine sum or d...

How do you find the exact functional value cos23π12\cos \dfrac{{23\pi }}{{12}} using the cosine sum or difference identity ?

Explanation

Solution

Here in this question we have to find the exact value of a given trigonometric function by using the cosine sum or difference identity. First rewrite the given angle in the form of addition or difference, then the standard trigonometric formula cosine sum i.e., cos(A+B)cos\,(A + B)or cosine difference i.e., cos(AB)cos\,(A - B) identity defined as cosA.cosBsinA.sinBcos\,A.cos\,B - sin\,A.sin\,B and cosA.cosB+sinA.sinBcos\,A.cos\,B + sin\,A.sin\,B using one of these we get required value.

Complete step by step solution:
To evaluate the given question by using a formula of cosine addition defined as the cosine addition formula calculates the cosine of an angle that is either the sum or difference of two other angles. It arises from the law of cosines and the distance formula. By using the cosine addition formula, the cosine of both the sum and difference of two angles can be found with the two angles' sines and cosines. Consider the given function
cos23π12\cos \dfrac{{23\pi }}{{12}}-------(1)
The angle 23π12\dfrac{{23\pi }}{{12}} can be written as π12+2π- \dfrac{\pi }{{12}} + 2\pi, then
Equation (1) becomes
cos(π12+2π)\cos \left( { - \dfrac{\pi }{{12}} + 2\pi } \right)
cos(2ππ12)\Rightarrow \,\cos \left( {2\pi - \dfrac{\pi }{{12}}} \right)------(2)
By using the ASTC rule of trigonometry, the angle 2ππ122\pi - \dfrac{\pi }{{12}} or angle 360θ360 - \theta lies in the third quadrant. cosine functions are positive here, hence the angle must be positive. Here we must keep the function as cosine itself.

Then, equation (2) becomes
cos(π12)\Rightarrow \,\cos \left( {\dfrac{\pi }{{12}}} \right)----------(3)
Again, the angle π12\dfrac{\pi }{{12}} can be written as π3π4\dfrac{\pi }{3} - \dfrac{\pi }{4}, then equation (3) becomes
cos(π3π4)\cos \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right)
Apply the trigonometric cosine identity of difference cos\,(A - B) = $$$$cos\,A.cos\,B + sin\,A.sin\,B.
Here A=π3A = \,\dfrac{\pi }{3} and B=π4B = \,\dfrac{\pi }{4}
Substitute A and B in formula then
cos(π3π4)=cosπ3.cosπ4+sinπ3.sinπ4\cos \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = cos\,\dfrac{\pi }{3}.cos\,\dfrac{\pi }{4} + sin\,\dfrac{\pi }{3}.sin\,\dfrac{\pi }{4}
By using specified cosine and sine angle i.e., cosπ3=12cos\,\,\dfrac{\pi }{3} = \dfrac{1}{2}, cosπ4=12cos\,\,\dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}, sinπ3=32sin\,\dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2} and sinπ4=12sin\,\dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}
cos(23π12)=cos(π3π4)=cosπ3.cosπ4+sinπ3.sinπ4\Rightarrow \,\cos \left( {\dfrac{{23\pi }}{{12}}} \right) = \cos \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = cos\,\dfrac{\pi }{3}.cos\,\dfrac{\pi }{4} + sin\,\dfrac{\pi }{3}.sin\,\dfrac{\pi }{4}

Substituting the values of cos60ocos\,\,6{0^o}, cos45ocos\,\,{45^o}, sin60o\sin \,\,6{0^o}and sin45o\sin \,\,{45^o}
cos(23π12)=cos(π3π4)=12.12+32.12\cos \left( {\dfrac{{23\pi }}{{12}}} \right) = \cos \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = \dfrac{1}{2}.\dfrac{1}{{\sqrt 2 }} + \dfrac{{\sqrt 3 }}{2}.\dfrac{1}{{\sqrt 2 }}
On simplification we get
cos(23π12)=122+322\cos \left( {\dfrac{{23\pi }}{{12}}} \right) = \dfrac{1}{{2\sqrt 2 }} + \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}
Take 222\sqrt 2 as LCM in RHS
cos(23π12)=1+322\therefore\,\cos \left( {\dfrac{{23\pi }}{{12}}} \right) = \dfrac{{1 + \sqrt 3 }}{{2\sqrt 2 }}

Hence, the exact functional value of cos(23π12)\cos \left( {\dfrac{{23\pi }}{{12}}} \right) is 1+322\dfrac{{1 + \sqrt 3 }}{{2\sqrt 2 }}.

Note: While the function is trigonometry we must know about the ASTC rule. Since they have mentioned how to solve the given function by using the cosine sum or difference identity, for this we have a standard formula. To find the value for the trigonometry function we need the table of trigonometry ratios for standard angles.