Solveeit Logo

Question

Question: How do you find the exact functional value \(cos\, 15^\circ\) using the cosine sum or difference ide...

How do you find the exact functional value cos15cos\, 15^\circ using the cosine sum or difference identity?

Explanation

Solution

When we use any trigonometric sum or difference identity, we must assume only that angles (aa and bb) in the identity, of whose trigonometric ratios are known to us.

Complete step by step solution:
As we have to find the value of cos15o\cos {15^o}, we will use the cosine difference identity, i.e.
cos(ab)=cosacosb+sinasinb\cos (a - b) = \cos a\cos b + \sin a\sin b
Let a=45oa = {45^o} and b=30ob = {30^o} as the value of cosa\cos a, cosb\cos b, sina\sin a and sinb\sin b are known to us. We will substitute the value of and in the cosine difference identity so that it becomes,
cos(ab)=cosacosb+sinasinb cos(45o30o)=cos45ocos30o+sin45osin30o   \Rightarrow \cos (a - b) = \cos a\cos b + \sin a\sin b \\\ \Rightarrow \cos ({45^o} - {30^o}) = \cos {45^o}\cos {30^o} + \sin {45^o}\sin {30^o} \\\ \\\
We have,
cos45o=12\cos {45^o} = \dfrac{1}{{\sqrt 2 }}; sin45o=12\sin {45^o} = \dfrac{1}{{\sqrt 2 }}; cos30o=32\cos {30^o} = \dfrac{{\sqrt 3 }}{2}; sin30o=12\sin {30^o} = \dfrac{1}{2}
On using these values, we get
cos15o=12×32+12×12\Rightarrow \cos {15^o} = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2}
On multiplying the values, we get
cos15o=322+122\Rightarrow \cos {15^o} = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} + \dfrac{1}{{2\sqrt 2 }}
Taking 222\sqrt 2 as the denominator and further simplifying, we get
cos15o=3+122\Rightarrow \cos {15^o} = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}
Substituting 3=1.732\sqrt 3 = 1.732 and 2=1.414\sqrt 2 = 1.414 above, we have
cos15o=1.732+12×1.414\Rightarrow \cos {15^o} = \dfrac{{1.732 + 1}}{{2 \times 1.414}}
cos15o=2.7322.828\Rightarrow \cos {15^o} = \dfrac{{2.732}}{{2.828}}
cos15o=0.966\Rightarrow \cos {15^o} = 0.966

Hence, the exact functional value of cos15o\cos {15^o} found using cosine difference identity is 0.9660.966.

Note: In case we don’t know the cosine sum or difference identity, we can use the sine sum or difference identity. But for this we will have to convert cosine angle into sine angle using complementary angles formulae, i.e. cosθ=sin(90θ)\cos \theta = \sin (90 - \theta ). In the given question, cos15o=sin(90o15o)=sin75o\cos {15^o} = \sin ({90^o} - {15^o}) = \sin {75^o}. We can now use the sine sum identity sin(a+b)=sinacosb+sinbcosa\sin (a + b) = \sin a\cos b + \sin b\cos a to find the value of sin75o\sin {75^o}, where a=45oa = {45^o} and b=30ob = {30^o}.