Solveeit Logo

Question

Question: How do you find the exact functional value \( \cos \,{105^ \circ } \) using the cosine sum or differ...

How do you find the exact functional value cos105\cos \,{105^ \circ } using the cosine sum or difference identity?

Explanation

Solution

Hint : To find the exact functional value cos 105o, by Here we use the standard trigonometric formula cosine sum i.e., cos(A+B)cos\,(A + B) or cosine difference i.e., cos(AB)cos\,(A - B) identity defined as cosA.cosBsinA.sinBcos\,A.cos\,B - sin\,A.sin\,B and cosA.cosB+sinA.sinBcos\,A.cos\,B + sin\,A.sin\,B using one of these we get required value.

Complete step-by-step answer :
We solve this by two methods
Method:1
Here in this question, we have to find the exact value of given cos105\cos \,{105^ \circ } by using cosine sum identity
cos105\cos \,{105^ \circ } can be written as cos(60+45)cos\,\left( {60 + 45} \right)
We know the formula cos(A+B)=cos\,(A + B) = cosA.cosBsinA.sinBcos\,A.cos\,B - sin\,A.sin\,B
Here A=60oA = \,6{0^o} and B=45oB = \,4{5^o}
Substitute A and B in formula then
cos(60+45)=cos60o.cos45osin60o.sin45o\Rightarrow cos\,\left( {60 + 45} \right) = cos\,6{0^o}.cos\,4{5^o} - sin\,6{0^o}.sin\,4{5^o}
By using specified cosine and sine angle i.e., cos60o=12cos\,\,6{0^o} = \dfrac{1}{2} , cos45o=12cos\,\,4{5^o} = \dfrac{1}{{\sqrt 2 }} , sin60o=32sin\,6{0^o} = \dfrac{{\sqrt 3 }}{2} and sin45o=12sin\,4{5^o} = \dfrac{1}{{\sqrt 2 }}
cos(105o)=cos60o.cos45osin60o.sin45o\therefore \,\,cos\,\left( {10{5^o}} \right) = cos\,6{0^o}.cos\,4{5^o} - sin\,6{0^o}.sin\,4{5^o}
Substituting the values of cos60ocos\,\,6{0^o} , cos45ocos\,\,{45^o} , sin60o\sin \,\,6{0^o} and sin45o\sin \,\,{45^o}
cos(105o)=12.1232.12\Rightarrow cos\,\left( {10{5^o}} \right) = \dfrac{1}{2}.\dfrac{1}{{\sqrt 2 }} - \dfrac{{\sqrt 3 }}{2}.\dfrac{1}{{\sqrt 2 }}
On simplification we get
cos(105o)=122322\Rightarrow cos\,\left( {10{5^o}} \right) = \dfrac{1}{{2\sqrt 2 }} - \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}
Take 222\sqrt 2 as LCM in RHS
cos(105o)=1322\therefore cos\,\left( {10{5^o}} \right) = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}
Hence, the exact functional value of cos105\cos \,{105^ \circ } is 1322\dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}
Or
Method:2
Otherwise, we can also find the exact value of given cos105\cos \,{105^ \circ } by using cosine difference identity
cos105\cos \,{105^ \circ } can be written as cos(18075)cos\,\left( {180 - 75} \right)
We know the formula cos(AB)=cosA.cosB+sinA.sinBcos\,(A - B) = cos\,A.cos\,B + sin\,A.sin\,B
Here A=180oA = \,18{0^o} and B=75oB = \,7{5^o}
Substitute A and B in formula then
cos(18075)=cos180o.cos75o+sin180o.sin75o\therefore \,\,cos\,\left( {180 - 75} \right) = cos\,18{0^o}.cos\,7{5^o} + sin\,18{0^o}.sin\,7{5^o}
We know the specified angle cos180=1cos 18{0^ \circ } = - 1 and sin180=0\sin \,18{0^ \circ } = 0
But we don’t know the value of cos75ocos\,{75^o} and sin75osin\,{75^o} to find this by using formula of cosine and sine sum identity i.e., cos(A+B)=cosA.cosBsinA.sinBcos\,(A + B) = cos\,A.cos\,B - sin\,A.sin\,B and sin(A+B)=sinA.cosB+cosA.sinB\sin \,(A + B) = sin\,A.cos\,B + cos\,A.sin\,B
cos75o=cos(45+30)=cos45o.cos30osin45o.sin30o\Rightarrow \,cos{75^o} = \cos \left( {45 + 30} \right) = cos\,{45^o}.cos\,{30^o} - sin\,{45^o}.sin\,{30^o}
sin75o=sin(45+30)=sin45o.cos30o+cos45o.sin30o\sin {75^o} = \sin \,(45 + 30) = sin\,{45^o}.cos\,{30^o} + cos\,{45^o}.sin\,{30^o}
We know the value of cos45o=12cos\,\,4{5^o} = \dfrac{1}{{\sqrt 2 }} , cos30o=32cos\,\,{30^o} = \dfrac{{\sqrt 3 }}{2} , sin45o=12sin\,4{5^o} = \dfrac{1}{{\sqrt 2 }} and sin30o=12sin\,{30^o} = \dfrac{1}{2}
cos75o=12.3212.12=3122\Rightarrow \,cos{75^o} = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2} = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}
sin75o=12.32+12.12=3+122\,\sin {75^o} = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2} = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}
cos105o=cos(18075)=1.(3122)+0.(3+122)\,\therefore \cos {105^o} = \,\,cos\,\left( {180 - 75} \right) = - 1.\left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right) + 0.\left( {\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}} \right)
cos105o=1322\,\therefore \cos {105^o} = \,\dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}
Hence, the exact functional value of cos105\cos \,{105^ \circ } is 1322\dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}
So, the correct answer is “ 1322\dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }} ”.

Note : The value of cosine can be determined by using several methods like double angle formula, half angle formula. Here we have found the exact value of cos105\cos \,{105^ \circ } by applying the cosine sum formula and cosine difference formula. It is defined as cos(A+B)=cosA.cosBsinA.sinBcos\,(A + B) = cos\,A.cos\,B - sin\,A.sin\,B and cos(AB)=cosA.cosB+sinA.sinBcos\,(A - B) = cos\,A.cos\,B + sin\,A.sin\,B . Here we have used the value of trigonometry ratios of standard angles. Hence, we can determine the solution for the question.