Question
Question: How do you find the exact functional value \( \cos \,{105^ \circ } \) using the cosine sum or differ...
How do you find the exact functional value cos105∘ using the cosine sum or difference identity?
Solution
Hint : To find the exact functional value cos 105o, by Here we use the standard trigonometric formula cosine sum i.e., cos(A+B) or cosine difference i.e., cos(A−B) identity defined as cosA.cosB−sinA.sinB and cosA.cosB+sinA.sinB using one of these we get required value.
Complete step-by-step answer :
We solve this by two methods
Method:1
Here in this question, we have to find the exact value of given cos105∘ by using cosine sum identity
cos105∘ can be written as cos(60+45)
We know the formula cos(A+B)= cosA.cosB−sinA.sinB
Here A=60o and B=45o
Substitute A and B in formula then
⇒cos(60+45)=cos60o.cos45o−sin60o.sin45o
By using specified cosine and sine angle i.e., cos60o=21 , cos45o=21 , sin60o=23 and sin45o=21
∴cos(105o)=cos60o.cos45o−sin60o.sin45o
Substituting the values of cos60o , cos45o , sin60o and sin45o
⇒cos(105o)=21.21−23.21
On simplification we get
⇒cos(105o)=221−223
Take 22 as LCM in RHS
∴cos(105o)=221−3
Hence, the exact functional value of cos105∘ is 221−3
Or
Method:2
Otherwise, we can also find the exact value of given cos105∘ by using cosine difference identity
cos105∘ can be written as cos(180−75)
We know the formula cos(A−B)=cosA.cosB+sinA.sinB
Here A=180o and B=75o
Substitute A and B in formula then
∴cos(180−75)=cos180o.cos75o+sin180o.sin75o
We know the specified angle cos180∘=−1 and sin180∘=0
But we don’t know the value of cos75o and sin75o to find this by using formula of cosine and sine sum identity i.e., cos(A+B)=cosA.cosB−sinA.sinB and sin(A+B)=sinA.cosB+cosA.sinB
⇒cos75o=cos(45+30)=cos45o.cos30o−sin45o.sin30o
sin75o=sin(45+30)=sin45o.cos30o+cos45o.sin30o
We know the value of cos45o=21 , cos30o=23 , sin45o=21 and sin30o=21
⇒cos75o=21.23−21.21=223−1
sin75o=21.23+21.21=223+1
∴cos105o=cos(180−75)=−1.(223−1)+0.(223+1)
∴cos105o=221−3
Hence, the exact functional value of cos105∘ is 221−3
So, the correct answer is “ 221−3 ”.
Note : The value of cosine can be determined by using several methods like double angle formula, half angle formula. Here we have found the exact value of cos105∘ by applying the cosine sum formula and cosine difference formula. It is defined as cos(A+B)=cosA.cosB−sinA.sinB and cos(A−B)=cosA.cosB+sinA.sinB . Here we have used the value of trigonometry ratios of standard angles. Hence, we can determine the solution for the question.