Solveeit Logo

Question

Question: How do you find the equations of common tangents to the circles \[{{x}^{2}}+{{y}^{2}}=9,{{x}^{2}}...

How do you find the equations of common tangents to the circles
x2+y2=9,x2+y216x+2y+49=0{{x}^{2}}+{{y}^{2}}=9,{{x}^{2}}+{{y}^{2}}-16x+2y+49=0 ?

Explanation

Solution

Hint : Firstly , the radii for the circles are found then, the equations of the tangents of a circle are found by considering the equation for slope, And further solving the equations by finding the values of mm and the different cases are taken then, the equations of tangents that are converse to the circle will be found.
Radius of the circle with origin as center
x2+y2=a2{{x}^{2}}+{{y}^{2}}={{a}^{2}} where aa is radius
And with center (h,k)\left( h,k \right) is
(xh)2+(yk)2=r2{{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}}
Where rr is radius

Complete step-by-step answer :
The circles are

x2+y2=9 x2+y216x+2y+49=0   {{x}^{2}}+{{y}^{2}}=9 \\\ {{x}^{2}}+{{y}^{2}}-16x+2y+49=0 \;

And the centers are A(0,0)A\left( 0,0 \right) , B(8,1)B\left( 8,-1 \right)
Here, as we can see that the radii for circles are

r1=3 r2=64+149=16=4   r_1=3 \\\ r_2=\sqrt{64+1-49}=\sqrt{16}=4 \;

Here, if we calculate the length of ABAB

AB=(08)2+(0+1)2 AB=65>r1+r2   AB=\sqrt{{{\left( 0-8 \right)}^{2}}+{{\left( 0+1 \right)}^{2}}} \\\ \Rightarrow AB=\sqrt{65}>r_1+r_2 \;

Here, we see that the circles lie outside each other,
The external center of similitude S divides ABAB externally in the ratio is 3:43:4
So, the coordinates are (24,+3)\left( -24,+3 \right)
Suppose mm is the slope of the direct common tangents

y3=m(x+24) y3=mx+24m (mxy)+(24m+3)=0(1)   y-3=m\left( x+24 \right) \\\ \Rightarrow y-3=mx+24m \\\ \Rightarrow \left( mx-y \right)+\left( 24m+3 \right)=0---\left( 1 \right) \;

This is a tangent to the circle x2+y2=9{{x}^{2}}+{{y}^{2}}=9

9(m2+1)=9(8m+1)2 9(m2+1)=64m2+10m+1 63m2+16m=0 m(63m+16)=0 m=0or1663   9\left( {{m}^{2}}+1 \right)=9{{\left( 8m+1 \right)}^{2}} \\\ \Rightarrow 9\left( {{m}^{2}}+1 \right)=64{{m}^{2}}+10m+1 \\\ 63{{m}^{2}}+16m=0 \\\ m\left( 63m+16 \right)=0 \\\ \Rightarrow m=0or-\dfrac{16}{63} \;

Case 1: If we take m=0m=0 ,
Substituting in the above equations, equation of tangent is

y+3=0 y3=0   -y+3=0 \\\ y-3=0 \;

Case 2: If we take m=1663m=-\dfrac{16}{63}
Equation of the tangent is

1663xy+(38463+3)=0 1663xy+19563=0 16x+63y+195=0   \Rightarrow -\dfrac{16}{63}x-y+\left( \dfrac{-384}{63}+3 \right)=0 \\\ \Rightarrow -\dfrac{16}{63}x-y+\dfrac{195}{63}=0 \\\ \Rightarrow 16x+63y+195=0 \;

The internal center of similitude SS' is dividing ABAB internally in the ratio of 3:43:4
The coordinates of SS' are found to be as (247,37)\left( \dfrac{24}{7},-\dfrac{3}{7} \right)
The equation of the transverse common tangent is found as:

(y+37)=m(x247) 7y+37=m(7x247) 7y+3=7mx24m 7mx7y(24m+3)=0(2)   \left( y+\dfrac{3}{7} \right)=m\left( x-\dfrac{24}{7} \right) \\\ \Rightarrow \dfrac{7y+3}{7}=m\left( \dfrac{7x-24}{7} \right) \\\ \Rightarrow 7y+3=7mx-24m \\\ \Rightarrow 7mx-7y-\left( 24m+3 \right)=0---\left( 2 \right) \;

This is a tangent to the circle x2+y2=9{{x}^{2}}+{{y}^{2}}=9
3=24m+349m2+49=3728m+1m2+13=\dfrac{\left| 24m+3 \right|}{\sqrt{49{{m}^{2}}+49}}=\dfrac{3}{7}\dfrac{\left| 28m+1 \right|}{\sqrt{{{m}^{2}}+1}}
Solving this, we get

49(m2+1)=(8m+1)2 49m2+49=64m2+16m+1 15m2+16m48=0 (3m4)(5m+12)=0 m=43or125  49\left( {{m}^{2}}+1 \right)={{\left( 8m+1 \right)}^{2}} \\\ \Rightarrow 49{{m}^{2}}+49=64{{m}^{2}}+16m+1 \\\ \Rightarrow 15{{m}^{2}}+16m-48=0 \\\ \Rightarrow \left( 3m-4 \right)\left( 5m+12 \right)=0 \\\ \Rightarrow m=\dfrac{4}{3}or-\dfrac{12}{5} \\\

Case (i), the equation of tangent is

28xx7y(963+3)=0 28xx7y1053=0 73(4x3y15)=0 4x3y15=0   \dfrac{28}{x}\centerdot x-7y-\left( \dfrac{96}{3}+3 \right)=0 \\\ \Rightarrow \dfrac{28}{x}\centerdot x-7y-\dfrac{105}{3}=0 \\\ \Rightarrow \dfrac{7}{3}\left( 4x-3y-15 \right)=0 \\\ \Rightarrow 4x-3y-15=0 \;

Taking Case (ii)
m=125m=-\dfrac{12}{5}
Equation of the transverse common tangent is

845x7y(2885+3)=0 845x7y+2735=0 75(12x+5y39)=0 12x+5y39=0  -\dfrac{84}{5}x-7y-\left( -\dfrac{288}{5}+3 \right)=0 \\\ \Rightarrow -\dfrac{84}{5}x-7y+\dfrac{273}{5}=0 \\\ \Rightarrow -\dfrac{7}{5}\left( 12x+5y-39 \right)=0 \\\ \Rightarrow 12x+5y-39=0 \\\

Therefore, equation of direct common tangents are

y3=0 16x+63y+195=0   y-3=0 \\\ 16x+63y+195=0 \;

Hence, equation of transverse common tangent are
4x3y15=0,12x+5y39=04x-3y-15=0,12x+5y-39=0
So, the correct answer is “ 4x3y15=0,12x+5y39=04x-3y-15=0,12x+5y-39=0 ”.

Note : The equations of the tangents of a circle are found by considering the equation for slope,
y3=m(x+24)y-3=m\left( x+24 \right)
And further solving the equations by finding the values of mm and the different cases are taken then, the equations of tangents that are converse to the circle are also found.