Solveeit Logo

Question

Question: How do you find the equation of the tangent line to the graph \[y = {\log _{10}}\left( {2x} \right)\...

How do you find the equation of the tangent line to the graph y=log10(2x)y = {\log _{10}}\left( {2x} \right) through point (5,1)(5,1) ?

Explanation

Solution

Hint : Here we first need to find the slope of the equation that is we differentiate it dydx\dfrac{{dy}}{{dx}} . After that we know that the equation of a tangent is yy1=m(xx1)y - {y_1} = m\left( {x - {x_1}} \right) , where ‘m’ is the slope and (x1,y1)\left( {{x_1},{y_1}} \right) is the point where tangent line passes through.

Complete step-by-step answer :
Given, y=log10(2x)y = {\log _{10}}\left( {2x} \right)
We need this in natural logarithm form.
The given y=log10(2x)y = {\log _{10}}\left( {2x} \right) can be written as,
10y=(2x){10^y} = \left( {2x} \right)
Applying natural log on both sides we have,
ln10y=ln(2x)\ln {10^y} = \ln \left( {2x} \right)
yln10=ln(2x)y\ln 10 = \ln \left( {2x} \right)
y=ln(2x)ln(10)\Rightarrow y = \dfrac{{\ln \left( {2x} \right)}}{{\ln \left( {10} \right)}}
Differentiate with respect to ‘x’.
dydx=ddx(ln(2x)ln(10))\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{{\ln \left( {2x} \right)}}{{\ln \left( {10} \right)}}} \right)
Since ln10\ln 10 is constant we can take it outside.
dydx=1ln(10)ddx(ln(2x))\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\ln \left( {10} \right)}}\dfrac{d}{{dx}}\left( {\ln \left( {2x} \right)} \right)
dydx=1ln(10)22x\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\ln \left( {10} \right)}}\dfrac{2}{{2x}}
dydx=1xln(10)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{x\ln \left( {10} \right)}}
But we have x=5x = 5 substituting we have,
dydx=15ln(10)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{5\ln \left( {10} \right)}}
Slope (m) of a tangent curve is m=dydxm = \dfrac{{dy}}{{dx}}
Hence, m=15ln(10)m = \dfrac{1}{{5\ln \left( {10} \right)}} .
We also have (x1,y1)=(5,1)\left( {{x_1},{y_1}} \right) = \left( {5,1} \right) .
We know the equation of tangent is
yy1=m(xx1)y - {y_1} = m\left( {x - {x_1}} \right)
Substituting we have,
y1=15ln(10)(x5)y - 1 = \dfrac{1}{{5\ln \left( {10} \right)}}\left( {x - 5} \right)
y1=x5ln(10)55ln(10)y - 1 = \dfrac{x}{{5\ln \left( {10} \right)}} - \dfrac{5}{{5\ln \left( {10} \right)}}
y1=x5ln(10)1ln(10)y - 1 = \dfrac{x}{{5\ln \left( {10} \right)}} - \dfrac{1}{{\ln \left( {10} \right)}}
yx5ln(10)=11ln(10)\Rightarrow y - \dfrac{x}{{5\ln \left( {10} \right)}} = 1 - \dfrac{1}{{\ln \left( {10} \right)}} . This is the required equation.
So, the correct answer is “ yx5ln(10)=11ln(10) y - \dfrac{x}{{5\ln \left( {10} \right)}} = 1 - \dfrac{1}{{\ln \left( {10} \right)}}”.

Note : If we have logarithm base other than 10 we use the formula logab=lnblnx{\log _a}b = \dfrac{{\ln b}}{{\ln x}} to convert it into natural logarithm. We need to know logarithm laws to simplify this. That is the logarithm power rule log(a)b=blog(a)\log {\left( a \right)^b} = b\log \left( a \right) . Logarithm product law, log(ab)=log(a)+log(b)\log \left( {ab} \right) = \log \left( a \right) + \log \left( b \right) and logarithm quotient rule log(ab)=log(a)log(b)\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right) . In all the above laws the bases are the same that is base 10.