Solveeit Logo

Question

Question: How do you find the distance between two parallel lines in 3-dimensional space?...

How do you find the distance between two parallel lines in 3-dimensional space?

Explanation

Solution

In the above question, we are given two parallel lines in a 3-dimensional space. We have to find the distance between those two given lines. Recall the formula of cross product of two vectors. The cross product of two vectors is itself a vector and is given by the formula a×b=absinθn^\overrightarrow a \times \overrightarrow b = \left| a \right|\left| b \right|\sin \theta \widehat n, where n^\widehat n is the unit vector in the perpendicular direction of both vectors. This formula will be useful in finding the required distance, let see how.

Complete step by step answer:
Given that, two parallel lines that lie in a 3-dimensional space. Let the two parallel lines be l1{l_1} and l2{l_2}. Let the equations of the two parallel lines be,
l1r=a1+λb{l_1} \Rightarrow \overrightarrow r = \overrightarrow {{a_1}} + \lambda \overrightarrow b
And
l2r=a2+μb{l_2} \Rightarrow \overrightarrow r = \overrightarrow {{a_2}} + \mu \overrightarrow b
Where a1\overrightarrow {{a_1}} and a2\overrightarrow {{a_2}} are points on l1{l_1} and l2{l_2} and b\overrightarrow b is the line parallel to both l1{l_1} and l2{l_2} .

A diagram of both the lines is shown above where the distance between l1{l_1} and l2{l_2} is PT. Consider the vectors ST\overrightarrow {ST} and b\overrightarrow b , their cross product can be written using the formula,
a×b=absinθn^\Rightarrow \overrightarrow a \times \overrightarrow b = \left| a \right|\left| b \right|\sin \theta \,\widehat n
As,
b×ST=bSTsinθn^\Rightarrow \overrightarrow b \times \overrightarrow {ST} = \left| {\overrightarrow b } \right|\left| {\overrightarrow {ST} } \right|\sin \theta \cdot \widehat n ...(1)
Also the distance ST can be written as,
ST=a2a1\overrightarrow {ST} = \overrightarrow {{a_2}} - \overrightarrow {{a_1}} ...(2)

Now from the diagram, we have
sinθ=PTST\Rightarrow \sin \theta = \left| {\dfrac{{PT}}{{ST}}} \right|
That gives,
STsinθ=PT\Rightarrow \left| {ST} \right|\sin \theta = \left| {PT} \right|
Multiplying both sides by bn^\left| {\overrightarrow b } \right| \cdot \widehat n , we get
bSTsinθn^=bPTn^\Rightarrow \left| {\overrightarrow b } \right|\left| {ST} \right|\sin \theta \cdot \widehat n = \left| {\overrightarrow b } \right| \cdot \left| {PT} \right| \cdot \widehat n
Now, using the equation ...(1) we can write the above equation as
b×ST=bPTn^\Rightarrow \overrightarrow b \times \overrightarrow {ST} = \left| {\overrightarrow b } \right|\left| {PT} \right| \cdot \widehat n
Taking modulus of both sides,
b×ST=bPTn^\Rightarrow \left| {\overrightarrow b \times \overrightarrow {ST} } \right| = \left| {\overrightarrow b } \right|\left| {PT} \right| \cdot \left| {\widehat n} \right|

Since n^=1\left| {\widehat n} \right| = 1 that gives,
b×ST=bPT\Rightarrow \left| {\overrightarrow b \times \overrightarrow {ST} } \right| = \left| {\overrightarrow b } \right|\left| {PT} \right|
Again, putting ST=a2a1\overrightarrow {ST} = \overrightarrow {{a_2}} - \overrightarrow {{a_1}} we get
b×(a2a1)=bPT\Rightarrow \left| {\overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)} \right| = \left| {\overrightarrow b } \right|\left| {PT} \right|
PT=b×(a2a1)b\therefore \left| {PT} \right| = \dfrac{{\left| {\overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)} \right|}}{{\left| {\overrightarrow b } \right|}}
That is the required distance between the two parallel lines l1{l_1} and l2{l_2}.

Therefore, the distance between two parallel lines in a 3-dimensional space is given by b×(a2a1)b\dfrac{{\left| {\overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)} \right|}}{{\left| {\overrightarrow b } \right|}}.

Note: In three-dimensional geometry, skew lines are two lines that do not intersect and also are not parallel. As a result they do not lie in the same plane. A simple example of a pair of skew lines is the pair of lines through opposite edges of a regular tetrahedron. While intersecting lines and parallel lines lie in the same plane i.e. are coplanar.