Solveeit Logo

Question

Question: How do you find the derivative with a square root in the denominator \(y=5\dfrac{x}{\sqrt{{{x}^{2}}+...

How do you find the derivative with a square root in the denominator y=5xx2+9y=5\dfrac{x}{\sqrt{{{x}^{2}}+9}}?

Explanation

Solution

We recall the quotient rule of differentiation that is for some differentiable functions f(x),g(x)f\left( x \right),g\left( x \right) given as ddx(f(x)g(x))=g(x)ddxf(x)f(x)ddxg(x)g2(x)\dfrac{d}{dx}\left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)=\dfrac{g\left( x \right)\dfrac{d}{dx}f\left( x \right)-f\left( x \right)\dfrac{d}{dx}g\left( x \right)}{{{g}^{2}}\left( x \right)}. We take f(x)=5x,g(x)=x2+9f\left( x \right)=5x,g\left( x \right)=\sqrt{{{x}^{2}}+9} and use quotient rules. We find ddxg(x)=ddxx2+9\dfrac{d}{dx}g\left( x \right)=\dfrac{d}{dx}\sqrt{{{x}^{2}}+9} using the chain rule differentiation dydx=dydu×dudx\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx} where we take u=x2+9u={{x}^{2}}+9 and y=x2+9y=\sqrt{{{x}^{2}}+9}.$$$$

Complete step by step answer:
We know that the process of finding derivative is called differentiation. We know that if we are given two differentiable functions f(x),g(x)f\left( x \right),g\left( x \right) in their respective domain with the condition on denominator g(x)0g\left( x \right)\ne 0 then we can differentiate the quotient using the following rule as
ddx(f(x)g(x))=g(x)ddxf(x)f(x)ddxg(x)g2(x)\dfrac{d}{dx}\left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)=\dfrac{g\left( x \right)\dfrac{d}{dx}f\left( x \right)-f\left( x \right)\dfrac{d}{dx}g\left( x \right)}{{{g}^{2}}\left( x \right)}
If we are asked to differentiate using the composite function y=g(f(x))y=g\left( f\left( x \right) \right) then we can differentiate using the chain rule as taking u=g(x)u=g\left( x \right)
dydx=dydu×dudx\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx}
We are asked to differentiate the derivative of following with a square root in the denominator
y=5xx2+9=5xx2+9y=5\dfrac{x}{\sqrt{{{x}^{2}}+9}}=\dfrac{5x}{\sqrt{{{x}^{2}}+9}}
We take the numerator function f(x)=5xf\left( x \right)=5x and g(x)=x2+9g\left( x \right)=\sqrt{{{x}^{2}}+9} . We first find differentiate f(x)=5xf\left( x \right)=5x with respect to xx to have;
ddxf(x)=ddx5x=5ddxx=51=5\dfrac{d}{dx}f\left( x \right)=\dfrac{d}{dx}5x=5\dfrac{d}{dx}x=5\cdot 1=5
We first find differentiate g(x)=x2+9g\left( x \right)=\sqrt{{{x}^{2}}+9} with respect to xx to have;
ddxg(x)=ddxx2+9\dfrac{d}{dx}g\left( x \right)=\dfrac{d}{dx}\sqrt{{{x}^{2}}+9}
We shall use chain rule here taking u=x2+9u={{x}^{2}}+9 and g(x)=x2+9g\left( x \right)=\sqrt{{{x}^{2}}+9}. We have ;
ddxg(x)=dd(x2+9)x2+9×ddx(x2+9)\Rightarrow \dfrac{d}{dx}g\left( x \right)=\dfrac{d}{d\left( {{x}^{2}}+9 \right)}\sqrt{{{x}^{2}}+9}\times \dfrac{d}{dx}\left( {{x}^{2}}+9 \right)
We use the standard differentiation of square function ddtt=12t\dfrac{d}{dt}\sqrt{t}=\dfrac{1}{2\sqrt{t}} for t=x2+9t={{x}^{2}}+9and sum rule of differentiation to have;

& \Rightarrow \dfrac{d}{dx}g\left( x \right)=\dfrac{1}{2\sqrt{{{x}^{2}}+9}}\left( \dfrac{d}{dx}{{x}^{2}}+\dfrac{d}{dx}9 \right) \\\ & \Rightarrow \dfrac{d}{dx}g\left( x \right)=\dfrac{1}{2\sqrt{{{x}^{2}}+9}}\left( 2x \right) \\\ & \Rightarrow \dfrac{d}{dx}g\left( x \right)=\dfrac{x}{\sqrt{{{x}^{2}}+9}} \\\ \end{aligned}$$ Now we use the quotient rule to have; $$\begin{aligned} & \dfrac{d}{dx}\left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)=\dfrac{g\left( x \right)\dfrac{d}{dx}f\left( x \right)-f\left( x \right)\dfrac{d}{dx}g\left( x \right)}{{{g}^{2}}\left( x \right)} \\\ & \Rightarrow \dfrac{d}{dx}\left( \dfrac{5x}{\sqrt{{{x}^{2}}+9}} \right)=\dfrac{\sqrt{{{x}^{2}}+9}\cdot 5-5x\cdot \dfrac{x}{\sqrt{{{x}^{2}}+9}}}{{{\left( \sqrt{{{x}^{2}}+9} \right)}^{2}}} \\\ \end{aligned}$$ We simplify the terms in numerator and denominator ro have; $$\begin{aligned} & \Rightarrow \dfrac{d}{dx}\left( \dfrac{5x}{\sqrt{{{x}^{2}}+9}} \right)=\dfrac{\dfrac{\left( {{x}^{2}}+9 \right)\cdot 5-5{{x}^{2}}}{\sqrt{{{x}^{2}}+9}}}{{{x}^{2}}+9} \\\ & \Rightarrow \dfrac{d}{dx}\left( \dfrac{5x}{\sqrt{{{x}^{2}}+9}} \right)=\dfrac{5{{x}^{2}}+45-5{{x}^{2}}}{\left( {{x}^{2}}+9 \right)\sqrt{{{x}^{2}}+9}} \\\ & \Rightarrow \dfrac{d}{dx}\left( \dfrac{5x}{\sqrt{{{x}^{2}}+9}} \right)=\dfrac{45}{{{\left( {{x}^{2}}+9 \right)}^{\dfrac{3}{2}}}} \\\ \end{aligned}$$ **Note:** We note that sum rule of differentiation is given by $\dfrac{d}{dx}\left( f+g \right)=\dfrac{d}{dx}f+\dfrac{d}{dx}g$. We note that here $g\left( x \right)=\sqrt{{{x}^{2}}+9}$ satisfies the condition$g\left( x \right)\ne 0$. Since square is always non-negative we have ${{x}^{2}}\ge 0\Rightarrow {{x}^{2}}+9\ge 9\Rightarrow \sqrt{{{x}^{2}}+9}\ge 3$. So we have always$g\left( x \right)=\sqrt{{{x}^{2}}+9}>0$. Hence the required condition is satisfied. We note that domain of $f\left( x \right)=5x$ is real number set and the domain of $\sqrt{{{x}^{2}}+9}$ is the set $\left[ -3,\infty \right)$ and both $f,g$ are differentiable everywhere in their respective domains. The domain of $\dfrac{f\left( x \right)}{g\left( x \right)}$ is $\left( -3,\infty \right)$.