Solveeit Logo

Question

Question: How do you find the derivative of \[y = \tan (x)\] using first principles?...

How do you find the derivative of y=tan(x)y = \tan (x) using first principles?

Explanation

Solution

Here in this question, we consider the given function as y and we are going to differentiate the given function with respect to x. The function is a trigonometric function so to differentiate the function we use the standard formulas on the trigonometry and then we are going to simplify.

Complete step by step solution:
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value with respect to a change in its argument. Derivatives are a fundamental tool of calculus.
Now here in this question we have to find the derivative of a given function by using the first principle. Derivative by first principle refers to using algebra to find a general expression for the slope of a curve. It is also known as the delta method. The derivative is a measure of the instantaneous rate of change, which is equal to f(x)=limh0f(x+h)f(x)hf'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}
here f(x)=tan(x)f(x) = \tan (x) and f(x+h)=tan(x+h)f(x + h) = \tan (x + h) and we know that the tangent trigonometry ratio can be written as tan(x)=sin(x)cos(x)\tan (x) = \dfrac{{\sin (x)}}{{\cos (x)}}, therefore first we simplify the f(x+h)f(x)f(x + h) - f(x). So we have
f(x+h)f(x)=tan(x+h)tan(x)\Rightarrow f(x + h) - f(x) = \tan (x + h) - \tan (x)
The tangent trigonometry ratio is written in the form of sine and cosine trigonometry ratio.
f(x+h)f(x)=sin(x+h)cos(x+h)sin(x)cos(x)\Rightarrow f(x + h) - f(x) = \dfrac{{\sin (x + h)}}{{\cos (x + h)}} - \dfrac{{\sin (x)}}{{\cos (x)}}
Use the trigonometry formulas and it is defined as sin(A+B)=sinAcosB+cosAsinB\sin (A + B) = \sin A\cos B + \cos A\sin B and cos(A+B)=cosAcosBsinAsinB\cos (A + B) = \cos A\cos B - \sin A\sin B
f(x+h)f(x)=sin(x).cos(h)+sin(h).cos(x)cos(x).cos(h)sin(x).sin(h)sin(x)cos(x)\Rightarrow f(x + h) - f(x) = \dfrac{{\sin (x).\cos (h) + \sin (h).\cos (x)}}{{\cos (x).\cos (h) - \sin (x).\sin (h)}} - \dfrac{{\sin (x)}}{{\cos (x)}}
On taking the LCM we get
f(x+h)f(x)=cos(x)(sin(x).cos(h)+sin(h).cos(x))(cos(x).cos(h)sin(x).sin(h))sin(x)cos(x)(cos(x).cos(h)sin(x).sin(h))\Rightarrow f(x + h) - f(x) = \dfrac{{\cos (x)\left( {\sin (x).\cos (h) + \sin (h).\cos (x)} \right) - \left( {\cos (x).\cos (h) - \sin (x).\sin (h)} \right)\sin (x)}}{{\cos (x)\left( {\cos (x).\cos (h) - \sin (x).\sin (h)} \right)}}
f(x+h)f(x)=cos(x)sin(x)cos(h)+cos2(x)sin(h)cos(x).cos(h)sin(x)+sin2(x)sin(h)cos2(x).cos(h)cos(x)sin(x).sin(h)\Rightarrow f(x + h) - f(x) = \dfrac{{\cos (x)\sin (x)\cos (h) + {{\cos }^2}(x)\sin (h) - \cos (x).\cos (h)\sin (x) + {{\sin }^2}(x)\sin (h)}}{{{{\cos }^2}(x).\cos (h) - \cos (x)\sin (x).\sin (h)}}
f(x+h)f(x)=cos2(x)sin(h)+sin2(x)sin(h)cos2(x).cos(h)cos(x)sin(x).sin(h)\Rightarrow f(x + h) - f(x) = \dfrac{{{{\cos }^2}(x)\sin (h) + {{\sin }^2}(x)\sin (h)}}{{{{\cos }^2}(x).\cos (h) - \cos (x)\sin (x).\sin (h)}}
f(x+h)f(x)=sin(h)(cos2(x)+sin2(x))cos2(x).cos(h)cos(x)sin(x).sin(h)\Rightarrow f(x + h) - f(x) = \dfrac{{\sin (h)({{\cos }^2}(x) + {{\sin }^2}(x))}}{{{{\cos }^2}(x).\cos (h) - \cos (x)\sin (x).\sin (h)}}
f(x+h)f(x)=sin(h)cos2(x).cos(h)cos(x)sin(x).sin(h)\Rightarrow f(x + h) - f(x) = \dfrac{{\sin (h)}}{{{{\cos }^2}(x).\cos (h) - \cos (x)\sin (x).\sin (h)}}
Divide by cos2(x)cos(h){\cos ^2}(x)\cos (h)
f(x+h)f(x)=sec2xtan(h)1tan(x).tan(h)\Rightarrow f(x + h) - f(x) = \dfrac{{{{\sec }^2}x\tan (h)}}{{1 - \tan (x).\tan (h)}}
Now divide by h we have
f(x+h)f(x)h=1h×sec2xtan(h)1tan(x).tan(h)\Rightarrow \dfrac{{f(x + h) - f(x)}}{h} = \dfrac{1}{h} \times \dfrac{{{{\sec }^2}x\tan (h)}}{{1 - \tan (x).\tan (h)}}
f(x+h)f(x)h=sec2x×tan(h)h×11tan(x).tan(h)\Rightarrow \dfrac{{f(x + h) - f(x)}}{h} = {\sec ^2}x \times \dfrac{{\tan (h)}}{h} \times \dfrac{1}{{1 - \tan (x).\tan (h)}}
On applying the limit we get
limh0f(x+h)f(x)h=limh0(sec2x×tan(h)h×11tan(x).tan(h))\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h} = \mathop {\lim }\limits_{h \to 0} \left( {{{\sec }^2}x \times \dfrac{{\tan (h)}}{h} \times \dfrac{1}{{1 - \tan (x).\tan (h)}}} \right)
limh0f(x+h)f(x)h=limh0sec2x×limh0tan(h)h×limh011tan(x).tan(h)\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h} = \mathop {\lim }\limits_{h \to 0} {\sec ^2}x \times \mathop {\lim }\limits_{h \to 0} \dfrac{{\tan (h)}}{h} \times \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{1 - \tan (x).\tan (h)}}
We know that limh0tan(h)h=1\mathop {\lim }\limits_{h \to 0} \dfrac{{\tan (h)}}{h} = 1 and limh0tan(h)=0\mathop {\lim }\limits_{h \to 0} \tan (h) = 0substituting these we get
limh0f(x+h)f(x)h=sec2x×1×limh0110\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h} = {\sec ^2}x \times 1 \times \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{1 - 0}}
limh0f(x+h)f(x)h=sec2x\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h} = {\sec ^2}x
f(x)=sec2x\Rightarrow f'(x) = {\sec ^2}x

Note: The differentiation is defined as the derivative of a function with respect to the independent variable. Here the dependent variable is y and the independent variable is x. If the function is to differentiate by using the first principle we use the formula and it is defined as f(x)=limh0=f(x+h)f(x)hf'(x) = \mathop {\lim }\limits_{h \to 0} = \dfrac{{f(x + h) - f(x)}}{h} , By using the limit and trigonometry formulas we can obtain the result