Solveeit Logo

Question

Question: How do you find the derivative of \( y={{\tan }^{4}}\left( x \right) \) ?...

How do you find the derivative of y=tan4(x)y={{\tan }^{4}}\left( x \right) ?

Explanation

Solution

We recall the definition of composite function gof(x)=g(f(x))gof\left( x \right)=g\left( f\left( x \right) \right) . We recall the chain rule of differentiation dydx=dydu×dudx\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx} where y=gof=tan4(x)y=gof={{\tan }^{4}}\left( x \right) and u=f(x)=tanxu=f\left( x \right)=\tan x . We first take u=f(x)u=f\left( x \right) as the function inside the bracket and yy as the given function. We then differentiate using chain rule and the standard differentiation of tanx\tan x that is ddx(tanx)=sec2x\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x .$$$$

Complete step-by-step answer:
We know from calculus that the derivative of a function of a real variable measures the rate of change of the functional value with respect to argument or input value. The process of finding derivative is called differentiation. If f(x)f\left( x \right) is real valued function then we use the differential operator ddx\dfrac{d}{dx} and find the derivative as
ddxf(x)=f(x)\dfrac{d}{dx}f\left( x \right)={{f}^{'}}\left( x \right)
If the functions f(x),g(x)f\left( x \right),g\left( x \right) are defined within sets f:ABf:A\to B and g:BCg:B\to C then the composite function from A to C is defend as g(f(x))g\left( f\left( x \right) \right) within sets gof:ACgof:A\to C . If we denote g(f(x))=yg\left( f\left( x \right) \right)=y and f(x)=uf\left( x \right)=u then we can differentiate the composite function using chain rule as
ddxg(f(x))=dydx=dydu×dudx\dfrac{d}{dx}g\left( f\left( x \right) \right)=\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx}
We are asked to differentiate the function tan4(x)=(tanx)4{{\tan }^{4}}\left( x \right)={{\left( \tan x \right)}^{4}} . We see that it is a composite function made by functions polynomial function that is x4{{x}^{4}} and trigonometric function that is tanx\tan x . Let us assign the function within the bracket as f(x)=tanx=uf\left( x \right)=\tan x=u and g(x)=x4g\left( x \right)={{x}^{4}} . So we have g(f(x))=g(tanx)=(tanx)4=yg\left( f\left( x \right) \right)=g\left( \tan x \right)={{\left( \tan x \right)}^{4}}=y . We differentiate using chain rule to have;

& \dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx} \\\ & \Rightarrow \dfrac{d}{dx}y=\dfrac{d}{du}y\times \dfrac{d}{dx}u \\\ & \Rightarrow \dfrac{d}{dx}{{\left( \tan x \right)}^{4}}=\dfrac{d}{d\left( \tan x \right)}{{\left( \tan x \right)}^{4}}\times \dfrac{d}{dx}\left( \tan x \right) \\\ \end{aligned}$$ We know that from standard differentiation of polynomial function as $ \dfrac{d}{dt}{{t}^{n}}=n{{t}^{n-1}} $ where $ n $ is any real number. We use it for $ t=\tan x,n=4 $ in the above step to have $$\begin{aligned} & \Rightarrow \dfrac{d}{dx}{{\left( \tan x \right)}^{n}}=4{{\left( \tan x \right)}^{4-1}}\times \dfrac{d}{dx}\left( \tan x \right) \\\ & \Rightarrow \dfrac{d}{dx}{{\left( \tan x \right)}^{n}}=4{{\left( \tan x \right)}^{3}}\times \dfrac{d}{dx}\left( \tan x \right) \\\ \end{aligned}$$ We know that from standard differentiation of tangent function $ \dfrac{d}{dt}\tan t={{\sec }^{2}}t $ . We use it for $ t=x $ in the above step to have the derivative as $$\Rightarrow \dfrac{d}{dx}{{\left( \tan x \right)}^{4}}=4{{\tan }^{3}} x {{\sec }^{2}}x$$ **Note:** We note that if one of the functions $ f\left( x \right),g\left( x \right) $ is not differentiable at some values of $ x $ then $ gof $ is also not differentiable at those values. Here $ \tan x $ does not exist for the values $ x=\left( 2n+1 \right)\dfrac{\pi }{2},n\in \mathsf{\mathbb{Z}} $ . Hence we cannot derivative of the given function $ {{\tan }^{4}}\left( x \right) $ at those values. We should also remember sum rule $ {{\left( f+g \right)}^{'}}={{f}^{'}}+{{g}^{'}} $ , the product rule $ {{\left( fg \right)}^{'}}=g{{f}^{'}}+f{{g}^{'}} $ and the quotient rule $ {{\left( \dfrac{f}{g} \right)}^{'}}=\dfrac{g{{f}^{'}}-f{{g}^{'}}}{{{g}^{2}}} $ of differentiation.