Solveeit Logo

Question

Question: How do you find the derivative of \[y = \operatorname{arccot} \left( x \right)\] ?...

How do you find the derivative of y=arccot(x)y = \operatorname{arccot} \left( x \right) ?

Explanation

Solution

ddx[arccot(x)]=11+x2\dfrac{d}{{dx}}\left[ {\operatorname{arccot} \left( x \right)} \right] = - \dfrac{1}{{1 + {x^2}}}

Notice if y=arccot(x)y = \operatorname{arccot} \left( x \right) then,
sin(y)=11+x2\sin (y) = \dfrac{1}{{\sqrt {1 + {x^2}} }}
Using Pythagoras Theorem
(hypotenuse)2=(base)2+(height)2{\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {height} \right)^2}
we get, cos(y)=x1+x2\cos (y) = \dfrac{x}{{\sqrt {1 + {x^2}} }}
Complete step by step answer-
Given that y=arccot(x)y = \operatorname{arccot} \left( x \right), then it follows
cot(y)=x\cot (y) = x and 0<y<π0 < y < \pi
Differentiating both sides with respect to x we get
ddx[cot(y)]=ddx[x]\Rightarrow \dfrac{d}{{dx}}\left[ {\cot \left( y \right)} \right] = \dfrac{d}{{dx}}\left[ x \right]
cosec2(y).dydx=1\Rightarrow - \cos e{c^2}\left( y \right).\dfrac{{dy}}{{dx}} = 1
dydx=1cosec2(y)=sin2(y)\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{1}{{\cos e{c^2}\left( y \right)}} = - {\sin ^2}\left( y \right)
dydx=(11+x2)2=11+x2\Rightarrow \dfrac{{dy}}{{dx}} = - {\left( {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right)^2} = - \dfrac{1}{{1 + {x^2}}}
Therefore, we get ddx[arccot(x)]=11+x2\dfrac{d}{{dx}}\left[ {\operatorname{arccot} \left( x \right)} \right] = - \dfrac{1}{{1 + {x^2}}}
Note- It is advised to the students to learn the value of the derivative of y=arccot(x)y = \operatorname{arccot} \left( x \right) as it will be useful in the future.