Solveeit Logo

Question

Question: How do you find the derivative of \(y = \ln \left| {\sec x + \tan x} \right|\)?...

How do you find the derivative of y=lnsecx+tanxy = \ln \left| {\sec x + \tan x} \right|?

Explanation

Solution

First of all, substitute secx+tanx\sec x + \tan x to some variable. Then apply the chain rule of differentiation which is dydx=dydt×dtdx\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{{dt}}{{dx}}. Differentiate it step by step and use formulas ddxsecx=secxtanx\dfrac{d}{{dx}}\sec x = \sec x\tan x and ddxtanx=sec2x\dfrac{d}{{dx}}\tan x = {\sec ^2}x. Replace the variable with secx+tanx\sec x + \tan x to get the answer.

Complete step-by-step solution:
According to the question, we have been given a function and we have to determine the derivative of it.
The given function is:
y=lnsecx+tanx\Rightarrow y = \ln \left| {\sec x + \tan x} \right|
We know that logarithm is defined only for positive values so anything under logarithm must always be positive. Thus we can remove the modulus from the equation. So we have:
y=ln(secx+tanx)\Rightarrow y = \ln \left( {\sec x + \tan x} \right)
If we substitute secx+tanx=t\sec x + \tan x = t in the equation, we will get:
y=lnt\Rightarrow y = \ln t
Now differentiating the function with respect to xx, we’ll get:
dydx=ddxlnt\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\ln t
Here we will apply chain rule of differentiation. This rule is stated below:
dydx=dydt×dtdx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{{dt}}{{dx}}
So applying this rule in our differentiation, we’ll get:
dydx=ddtlnt×dtdx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dt}}\ln t \times \dfrac{{dt}}{{dx}}
We know that the differentiation of lnx\ln x is 1x\dfrac{1}{x}, using this, we have:
dydx=1t×dtdx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{t} \times \dfrac{{dt}}{{dx}}
Putting back the value of tt, we’ll get:
dydx=1(secx+tanx)×ddx(secx+tanx)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\left( {\sec x + \tan x} \right)}} \times \dfrac{d}{{dx}}\left( {\sec x + \tan x} \right)
Differentiating it step by step, we’ll get:
dydx=1(secx+tanx)(ddxsecx+ddxtanx)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\left( {\sec x + \tan x} \right)}}\left( {\dfrac{d}{{dx}}\sec x + \dfrac{d}{{dx}}\tan x} \right)
From the formulas of differentiation, we have:
ddxsecx=secxtanx and ddxtanx=sec2x\Rightarrow \dfrac{d}{{dx}}\sec x = \sec x\tan x{\text{ and }}\dfrac{d}{{dx}}\tan x = {\sec ^2}x
Putting these formulas, we’ll get:
dydx=1(secx+tanx)(secxtanx+sec2x)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\left( {\sec x + \tan x} \right)}}\left( {\sec x\tan x + {{\sec }^2}x} \right)
Simplifying it further, we’ll get:
dydx=1(secx+tanx)(tanx+secx)secx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\left( {\sec x + \tan x} \right)}}\left( {\tan x + \sec x} \right)\sec x
Cancelling (tanx+secx)\left( {\tan x + \sec x} \right) from both numerator and denominator, we have:
dydx=secx\Rightarrow \dfrac{{dy}}{{dx}} = \sec x

secx\sec x is the required answer.

Note: Whenever we have to differentiate a composite function, we always use the chain rule of differentiation after substitution. This makes a complex looking function simple from where we can differentiate step by step. For example, consider the given composite function:
y=f(g(x))\Rightarrow y = f\left( {g\left( x \right)} \right)
To differentiate this function, we’ll substitute g(x)=tg\left( x \right) = t, we will have:
y=f(t)\Rightarrow y = f\left( t \right)
Now we can apply chain rule of differentiation as shown below:
dydx=ddxf(t)×dtdx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}f\left( t \right) \times \dfrac{{dt}}{{dx}}
Now this differentiation is simple and we can do it step by step. After doing this, we can put back the value of tt to get the answer.