Solveeit Logo

Question

Question: How do you find the derivative of \(y={{\left( \ln x \right)}^{n}}\) ? \[\]...

How do you find the derivative of y=(lnx)ny={{\left( \ln x \right)}^{n}} ? $$$$

Explanation

Solution

We recall the definition of composite function gof(x)=g(f(x))gof\left( x \right)=g\left( f\left( x \right) \right). We recall the chain rule of differentiation dydx=dydu×dudx\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx} where y=gof=(lnx)ny=gof={{\left( \ln x \right)}^{n}} and u=f(x)=lnxu=f\left( x \right)=\ln x. We first find u=f(x)u=f\left( x \right) as the function inside the bracket and yy as the given function and then differentiate using chain rule. We then solve alternatively using the first principle as ddxf(x)=limh0f(x+h)f(x)h\dfrac{d}{dx}f\left( x \right)=\displaystyle \lim_{h\to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}.$$$$

Complete step-by-step answer:
If the functions f(x),g(x)f\left( x \right),g\left( x \right) are defined within sets f:ABf:A\to B and g:BCg:B\to C then the composite function from A to C is defend as g(f(x))g\left( f\left( x \right) \right) within sets gof:ACgof:A\to C. If we denote g(f(x))=yg\left( f\left( x \right) \right)=y and f(x)=uf\left( x \right)=u then we can differentiate the composite function using chain rule as
ddxg(f(x))=dydx=dydu×dudx\dfrac{d}{dx}g\left( f\left( x \right) \right)=\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx}
We are asked to differentiate the function (lnx)n{{\left( \ln x \right)}^{n}}. We see that it is a composite function which made by functions polynomial function that is xn{{x}^{n}} and natural logarithmic function that is lnx\ln x. Let us assign the function within the bracket as f(x)=lnx=uf\left( x \right)=\ln x=u and g(x)=xng\left( x \right)={{x}^{n}}. So we have g(f(x))=g(lnx)=(lnx)n=yg\left( f\left( x \right) \right)=g\left( \ln x \right)={{\left( \ln x \right)}^{n}}=y. We differentiate using chain rule to have;

& \dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx} \\\ & \Rightarrow \dfrac{d}{dx}y=\dfrac{d}{du}y\times \dfrac{d}{dx}u \\\ & \Rightarrow \dfrac{d}{dx}{{\left( \ln x \right)}^{n}}=\dfrac{d}{d\left( \ln x \right)}{{\left( \ln x \right)}^{n}}\times \dfrac{d}{dx}\left( \ln x \right) \\\ \end{aligned}$$ We know that from standard differentiation of polynomial function as $\dfrac{d}{dt}{{t}^{n}}=n{{t}^{n-1}}$ where $n$ is any real number. We use it for $t=\ln x,n=n$ in the above step to have $$\Rightarrow \dfrac{d}{dx}{{\left( \ln x \right)}^{n}}=n{{\left( \ln x \right)}^{n-1}}\times \dfrac{d}{dx}\left( \ln x \right)$$ We know that from standard differentiation of logarithmic function $\dfrac{d}{dt}\ln t=\dfrac{1}{t}$. We use it for $t=x$ in the above step to have $$\begin{aligned} & \Rightarrow \dfrac{d}{dx}{{\left( \ln x \right)}^{n}}=n{{\left( \ln x \right)}^{n-1}}\times \dfrac{1}{x} \\\ & \Rightarrow \dfrac{d}{dx}{{\left( \ln x \right)}^{n}}=\dfrac{n{{\left( \ln x \right)}^{n-1}}}{x} \\\ \end{aligned}$$ **Alternative Method:** We can find the derivative using the first principle. We know that derivative using the first principle for any continuous function $f\left( x \right)$ at any point in the domain of $f$ is obtained from the following working rule $$\dfrac{d}{dx}f\left( x \right)=\displaystyle \lim_{h\to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$$ We put $f\left( x \right)={{\left( \ln x \right)}^{n}}$ in the working rule as $$\dfrac{d}{dx}\ln {{\left( x+h \right)}^{n}}=\displaystyle \lim_{h\to 0}\dfrac{{{\left( \ln \left( x+h \right) \right)}^{n}}-{{\left( \ln x \right)}^{n}}}{h}.....\left( 1 \right)$$ We use the algebraic identity ${{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {{a}^{n-1}}+{{a}^{n-1}}b+{{a}^{n-1}}{{b}^{2}}+...+a{{b}^{n-2}}+{{b}^{n-1}} \right)$ and simplify the numerator of the above step for $a=\ln \left( x+h \right),b=\ln x$ to have $$\begin{aligned} & {{\left( \ln \left( x+h \right) \right)}^{n}}-{{\left( \ln x \right)}^{n}}=\left( \ln \left( x+h \right)-\ln x \right)\left\\{ {{\left( \ln \left( x+h \right) \right)}^{n-1}}+{{\left( \ln \left( x+h \right) \right)}^{n-2}}\left( \ln x \right)+ \right. \\\ & \left. ...+\left( \ln \left( x+h \right) \right){{\left( \ln x \right)}^{n-2}}+{{\left( \ln x \right)}^{n-1}} \right\\} \\\ \end{aligned}$$ We also know the logarithmic identity involving quotient $\log \left( \dfrac{m}{n} \right)=\log m-\log n$ for $m=x+h,n=x$ in the above step to have; $$\begin{aligned} & {{\left( \ln \left( x+h \right) \right)}^{n}}-{{\left( \ln x \right)}^{n}}=\ln \left( \dfrac{x+h}{x} \right)\left\\{ {{\left( \ln \left( x+h \right) \right)}^{n-1}}+{{\left( \ln \left( x+h \right) \right)}^{n-2}}\left( \ln x \right)+ \right. \\\ & \left. ...+\left( \ln \left( x+h \right) \right){{\left( \ln x \right)}^{n-2}}+{{\left( \ln x \right)}^{n-1}} \right\\} \\\ \end{aligned}$$ We put the above result in (1) and then use law of product of limits to have; $$\begin{aligned} & \dfrac{d}{dx}{{\left( \ln x \right)}^{n}}=\displaystyle \lim_{h\to 0}\dfrac{{{\left( \ln \left( x+h \right) \right)}^{n}}-{{\left( \ln x \right)}^{n}}}{h} \\\ & \Rightarrow \dfrac{d}{dx}{{\left( \ln x \right)}^{n}}=\displaystyle \lim_{h\to 0}\dfrac{\ln \left( \dfrac{x+h}{x} \right)}{h}\times \displaystyle \lim_{h\to 0}\left\\{ {{\left( \ln \left( x+h \right) \right)}^{n-1}}+{{\left( \ln \left( x+h \right) \right)}^{n-2}}\left( \ln x \right)+ \right. \\\ & \left. ...+\left( \ln \left( x+h \right) \right){{\left( \ln x \right)}^{n-2}}+{{\left( \ln x \right)}^{n-1}} \right\\} \\\ & \Rightarrow \dfrac{d}{dx}{{\left( \ln x \right)}^{n}}=\displaystyle \lim_{h\to 0}\dfrac{\ln \left( \dfrac{x}{x}+\dfrac{h}{x} \right)}{h}\times \left\\{ {{\left( \ln x \right)}^{n-1}}+{{\left( \ln x \right)}^{n-1}}+....\left( n\text{ times} \right) \right\\} \\\ & \Rightarrow \dfrac{d}{dx}{{\left( \ln x \right)}^{n}}=\displaystyle \lim_{h\to 0}\dfrac{\ln \left( 1+\dfrac{h}{x} \right)}{h}\times n{{\left( \ln x \right)}^{n-1}} \\\ \end{aligned}$$ We multiply and divide $\dfrac{1}{x}$ in the numerator and denominator of the limit to have $$\begin{aligned} & \Rightarrow \dfrac{d}{dx}{{\left( \ln x \right)}^{n}}=\displaystyle \lim_{h\to 0}\dfrac{\dfrac{1}{x}\ln \left( 1+\dfrac{h}{x} \right)}{\dfrac{1}{x}\times h}\times n{{\left( \ln x \right)}^{n-1}} \\\ & \Rightarrow \dfrac{d}{dx}{{\left( \ln x \right)}^{n}}=n{{\left( \ln x \right)}^{n-1}}\times \dfrac{1}{x}\times \displaystyle \lim_{h\to 0}\dfrac{\ln \left( 1+\dfrac{h}{x} \right)}{\dfrac{h}{x}} \\\ \end{aligned}$$ We use the standard limit $\displaystyle \lim_{t\to 0}\dfrac{\ln \left( 1+t \right)}{t}=1$ for $t=\dfrac{h}{x}$ in the above step to have; $$\begin{aligned} & \Rightarrow \dfrac{d}{dx}{{\left( \ln x \right)}^{n}}=n{{\left( \ln x \right)}^{n-1}}\times \dfrac{1}{x}\times 1 \\\ & \Rightarrow \dfrac{d}{dx}{{\left( \ln x \right)}^{n}}=\dfrac{n{{\left( \ln x \right)}^{n-1}}}{x} \\\ \end{aligned}$$ **Note:** We note that logarithmic function takes only positive real numbers as inputs and hence the given function ${{\left( \ln x \right)}^{n}}$ will have domain and range as ${{\left( \ln x \right)}^{n}}:{{\mathsf{\mathbb{R}}}^{+}}\to \mathsf{\mathbb{R}}$. We also note that while we are finding the limit in first derivative principle the terms independent of $h$ are constants like $\dfrac{1}{x},n,{{\left( \ln x \right)}^{n-1}}$since we are taking limit on $h$ not on $x$. If limit exists for $f\left( x \right),g\left( x \right)$ at $x=a$ then by law of product of limits $\displaystyle \lim_{x \to a}f\left( x \right)g\left( x \right)=\displaystyle \lim_{x \to a}f\left( x \right)\cdot \displaystyle \lim_{x \to a}g\left( x \right)$.