Solveeit Logo

Question

Question: How do you find the derivative of \(y=\dfrac{\cos \left( x \right)}{\text{cosec}\left( x \right)}\) ...

How do you find the derivative of y=cos(x)cosec(x)y=\dfrac{\cos \left( x \right)}{\text{cosec}\left( x \right)} ?

Explanation

Solution

To get the derivative of y=cos(x)cosec(x)y=\dfrac{\cos \left( x \right)}{\text{cosec}\left( x \right)} with respect to x, we will use the formula of dydx=d(uv)dx\dfrac{dy}{dx}=\dfrac{d\left( \dfrac{u}{v} \right)}{dx} , where u=cos(x)u=\cos \left( x \right) , v=cosec(x)v=\text{cosec}\left( x \right) and d(uv)dx=v.dudxu.dvdxv2\dfrac{d\left( \dfrac{u}{v} \right)}{dx}=\dfrac{v.\dfrac{du}{dx}-u.\dfrac{dv}{dx}}{{{v}^{2}}} . After getting the derivative of cos(x)\cos \left( x \right) , cosec(x)\text{cosec}\left( x \right) and using it in the formula then simplifying it, we will get the derivative of y=cos(x)cosec(x)y=\dfrac{\cos \left( x \right)}{\text{cosec}\left( x \right)} with respect to xx .

Complete step by step solution:
The given equation is y=cos(x)cosec(x)y=\dfrac{\cos \left( x \right)}{\text{cosec}\left( x \right)} that is in the form of uv\dfrac{u}{v} , where we will get the values after comparison as u=cos(x)u=\cos \left( x \right) and v=cosec(x)v=\text{cosec}\left( x \right).
We will use the formula of derivative of division for getting the derivative of the given equation which is:
d(uv)dx=v.dudxu.dvdxv2\dfrac{d\left( \dfrac{u}{v} \right)}{dx}=\dfrac{v.\dfrac{du}{dx}-u.\dfrac{dv}{dx}}{{{v}^{2}}}
Since, we got the values of uu and vv , we will put these values in the above formula that will be as:
d(cos(x)cosec(x))dx=cosec(x).d[cos(x)]dxcos(x).d[cosec(x)]dx[cosec(x)]2\Rightarrow \dfrac{d\left( \dfrac{\cos \left( x \right)}{\text{cosec}\left( x \right)} \right)}{dx}=\dfrac{\text{cosec}\left( x \right).\dfrac{d\left[ \cos \left( x \right) \right]}{dx}-\cos \left( x \right).\dfrac{d\left[ \text{cosec}\left( x \right) \right]}{dx}}{{{\left[ \text{cosec}\left( x \right) \right]}^{2}}}
Since, the derivative of cos(x)\cos \left( x \right) is [sin(x)]\left[ -\sin \left( x \right) \right] and the derivative of cosec(x)\text{cosec}\left( x \right) is [cosec(x).cot(x)]\left[ -\text{cosec}\left( x \right).\cot \left( x \right) \right] , we will use it in the above equation. So, the equation will be now as:
d(cos(x)cosec(x))dx=cosec(x).[sin(x)]cos(x).[cosec(x).cot(x)][cosec(x)]2\Rightarrow \dfrac{d\left( \dfrac{\cos \left( x \right)}{\text{cosec}\left( x \right)} \right)}{dx}=\dfrac{\text{cosec}\left( x \right).\left[ -\sin \left( x \right) \right]-\cos \left( x \right).\left[ -\text{cosec}\left( x \right).\cot \left( x \right) \right]}{{{\left[ \text{cosec}\left( x \right) \right]}^{2}}}
Now, we will simplify the equation step by step,
d(cos(x)cosec(x))dx=cosec(x).[sin(x)]cos(x).[cosec(x).cot(x)][cosec(x)]2\Rightarrow \dfrac{d\left( \dfrac{\cos \left( x \right)}{\text{cosec}\left( x \right)} \right)}{dx}=\dfrac{\text{cosec}\left( x \right).\left[ -\sin \left( x \right) \right]-\cos \left( x \right).\left[ -\text{cosec}\left( x \right).\cot \left( x \right) \right]}{{{\left[ \text{cosec}\left( x \right) \right]}^{2}}}
d(cos(x)cosec(x))dx=sin(x).cosec(x)+cos(x).cosec(x).cot(x)[cosec(x)]2\Rightarrow \dfrac{d\left( \dfrac{\cos \left( x \right)}{\text{cosec}\left( x \right)} \right)}{dx}=\dfrac{-\sin \left( x \right).\text{cosec}\left( x \right)+\cos \left( x \right)\text{.cosec}\left( x \right).\cot \left( x \right)}{{{\left[ \text{cosec}\left( x \right) \right]}^{2}}}
Since, we know that cosec(x)\text{cosec}\left( x \right) is equal to 1sin(x)\dfrac{1}{\sin \left( x \right)} and cot(x)\cot \left( x \right) is equal to cos(x)sin(x)\dfrac{\cos \left( x \right)}{\sin \left( x \right)} . So, here we will use them in the above equation so that above equation will be as:
d(cos(x)cosec(x))dx=sin(x).1sin(x)+cos(x).1sin(x).cos(x)sin(x)[1sin(x)]2\Rightarrow \dfrac{d\left( \dfrac{\cos \left( x \right)}{\text{cosec}\left( x \right)} \right)}{dx}=\dfrac{-\sin \left( x \right).\dfrac{1}{\sin \left( x \right)}+\cos \left( x \right)\text{.}\dfrac{1}{\sin \left( x \right)}.\dfrac{\cos \left( x \right)}{\sin \left( x \right)}}{{{\left[ \dfrac{1}{\sin \left( x \right)} \right]}^{2}}}
Again we will simplify the above equation, so the process would be as:
d(cos(x)cosec(x))dx=[sin(x).1sin(x)+cos(x).1sin(x).cos(x)sin(x)]×[sin(x)]2\Rightarrow \dfrac{d\left( \dfrac{\cos \left( x \right)}{\text{cosec}\left( x \right)} \right)}{dx}=\left[ -\sin \left( x \right).\dfrac{1}{\sin \left( x \right)}+\cos \left( x \right)\text{.}\dfrac{1}{\sin \left( x \right)}.\dfrac{\cos \left( x \right)}{\sin \left( x \right)} \right]\times {{\left[ \sin \left( x \right) \right]}^{2}}
\Rightarrow \dfrac{d\left( \dfrac{\cos \left( x \right)}{\text{cosec}\left( x \right)} \right)}{dx}=\left\\{ -1+{{\left[ \dfrac{\cos \left( x \right)}{\sin \left( x \right)} \right]}^{2}} \right\\}\times {{\left[ \sin \left( x \right) \right]}^{2}}
\Rightarrow \dfrac{d\left( \dfrac{\cos \left( x \right)}{\text{cosec}\left( x \right)} \right)}{dx}=\left\\{ -1\times {{\left[ \sin \left( x \right) \right]}^{2}}+{{\left[ \dfrac{\cos \left( x \right)}{\sin \left( x \right)} \right]}^{2}}\times {{\left[ \sin \left( x \right) \right]}^{2}} \right\\}
\Rightarrow \dfrac{d\left( \dfrac{\cos \left( x \right)}{\text{cosec}\left( x \right)} \right)}{dx}=\left\\{ -{{\sin }^{2}}\left( x \right)+{{\cos }^{2}}\left( x \right) \right\\}
The above equation can be written as:
\Rightarrow \dfrac{d\left( \dfrac{\cos \left( x \right)}{\text{cosec}\left( x \right)} \right)}{dx}=\left\\{ {{\cos }^{2}}\left( x \right)-{{\sin }^{2}}\left( x \right) \right\\}
In the above equation we got the derivative of the given equation as \left\\{ {{\cos }^{2}}\left( x \right)-{{\sin }^{2}}\left( x \right) \right\\}but \left\\{ {{\cos }^{2}}\left( x \right)-{{\sin }^{2}}\left( x \right) \right\\} is equal to cos(2x)\cos \left( 2x \right) . So, the above equation can be written as:
d(cos(x)cosec(x))dx=cos(2x)\Rightarrow \dfrac{d\left( \dfrac{\cos \left( x \right)}{\text{cosec}\left( x \right)} \right)}{dx}=\cos \left( 2x \right)
Hence, the derivative of y=cos(x)cosec(x)y=\dfrac{\cos \left( x \right)}{\text{cosec}\left( x \right)} with respect to xx is dydx=cos(2x)\dfrac{dy}{dx}=\cos \left( 2x \right) .

Note:
For finding the derivative of y=cos(x)cosec(x)y=\dfrac{\cos \left( x \right)}{\text{cosec}\left( x \right)} with respect to xx, we can use another method that is in terms of multiplication. Since, we know that sin(x)\sin \left( x \right) is equal to 1cosec(x)\dfrac{1}{\text{cosec}\left( x \right)} , we can make the changes in the given question with help of it. So, we can write the given equation as y=sin(x).cos(x)y=\sin \left( x \right).\cos \left( x \right) . Now, we can use the derivative formula of multiplication that is:
d(u.v)dx=u.dvdx+dudx.v\dfrac{d\left( u.v \right)}{dx}=u.\dfrac{dv}{dx}+\dfrac{du}{dx}.v , where we will useu=sin(x)u=\sin \left( x \right) and v=cos(x)v=\cos \left( x \right) in the equation. Since, The derivative of sin(x)\sin \left( x \right) is cos(x)\cos \left( x \right) and the derivative of cos(x)\cos \left( x \right) is [sin(x)]\left[ -\sin \left( x \right) \right]. After applying these derivatives in the in the process solution and then simplifying it, we will get the derivative of the equation y=cos(x)cosec(x)y=\dfrac{\cos \left( x \right)}{\text{cosec}\left( x \right)} with respect to xx:
dydx=cos(2x)\dfrac{dy}{dx}=\cos \left( 2x \right)