Solveeit Logo

Question

Question: How do you find the derivative of \(y = \dfrac{4}{{\cos x}}\)?...

How do you find the derivative of y=4cosxy = \dfrac{4}{{\cos x}}?

Explanation

Solution

We have to find yy'. For this differentiate yy with respect to xx. Then, use the property that the differentiation of the product of a constant and a function = the constant ×\times differentiation of the function. Then, use trigonometry identity cosθ×secθ=1\cos \theta \times \sec \theta = 1 to replace 1cosx\dfrac{1}{{\cos x}} with secx\sec x. Then, use the property that the differentiation of secant function is a product of secant and tangent function and get the desired result.

Formula used: The differentiation of the product of a constant and a function = the constant ×\times differentiation of the function.
i.e., ddx(kf(x))=kddx(f(x))\dfrac{d}{{dx}}\left( {kf\left( x \right)} \right) = k\dfrac{d}{{dx}}\left( {f\left( x \right)} \right), where kk is a constant.
The differentiation of secant function is a product of secant and tangent function.
i.e., ddx(secx)=secxtanx\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x
Trigonometric identity: cosθ×secθ=1\cos \theta \times \sec \theta = 1

Complete step-by-step solution:
We have to find the derivative of y=4cosxy = \dfrac{4}{{\cos x}}.............…(i)
So, differentiate yy with respect to xx.
dydx=ddx(4cosx)\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{4}{{\cos x}}} \right)...........…(ii)
Now, using the property that the differentiation of the product of a constant and a function = the constant ×\times differentiation of the function.
i.e., ddx(kf(x))=kddx(f(x))\dfrac{d}{{dx}}\left( {kf\left( x \right)} \right) = k\dfrac{d}{{dx}}\left( {f\left( x \right)} \right), where kk is a constant.
So, in above differentiation (ii), constant 44 can be taken outside the differentiation.
dydx=4ddx(1cosx)\Rightarrow \dfrac{{dy}}{{dx}} = 4\dfrac{d}{{dx}}\left( {\dfrac{1}{{\cos x}}} \right)...........…(iii)
Now, use trigonometry identity cosθ×secθ=1\cos \theta \times \sec \theta = 1 to replace 1cosx\dfrac{1}{{\cos x}} with secx\sec x.
So, differentiation (iii) can be written as
dydx=4ddx(secx)\Rightarrow \dfrac{{dy}}{{dx}} = 4\dfrac{d}{{dx}}\left( {\sec x} \right)............…(iv)
Now, using the property that the differentiation of secant function is a product of secant and tangent function.
i.e., ddx(secx)=secxtanx\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x
So, in above differentiation (iv), we can use above property and find the derivative of yy.dydx=4sec(x)tan(x) \Rightarrow \dfrac{{dy}}{{dx}} = 4\sec \left( x \right)\tan \left( x \right)

Therefore, the derivative is y=4sec(x)tan(x)y' = 4\sec \left( x \right)\tan \left( x \right).

Note: We can also find the derivative using the limit definition of derivative.
Definition of the Derivative:
The derivative of f(x)f\left( x \right) with respect to xx is the function f(x)f'\left( x \right) and is defined as,
f(x)=limh0f(x+h)f(x)hf'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}..........…(1)
So, all we really need to do is to plug this function into the definition of the derivative, (1), and do some algebra.
First plug the function into the definition of the derivative.
f(x)=limh0f(x+h)f(x)hf'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}
y(x)=limh04cos(x+h)4cos(x)h\Rightarrow y'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{4}{{\cos \left( {x + h} \right)}} - \dfrac{4}{{\cos \left( x \right)}}}}{h}
Now, we know that we can’t just plug in h=0h = 0 since this will give us a division by zero error. So, we are going to have to do some work.
y(x)=4limh01cos(x+h)1cos(x)h\Rightarrow y'\left( x \right) = 4\mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{1}{{\cos \left( {x + h} \right)}} - \dfrac{1}{{\cos \left( x \right)}}}}{h}
y(x)=4limh0cos(x)cos(x+h)hcos(x)cos(x+h)\Rightarrow y'\left( x \right) = 4\mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( x \right) - \cos \left( {x + h} \right)}}{{h\cos \left( x \right)\cos \left( {x + h} \right)}}
As cosCcosD=2sin(C+D2)sin(DC2)\cos C - \cos D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{D - C}}{2}} \right).
y(x)=4limh02sin(2x+h2)sin(h2)hcos(x)cos(x+h)\Rightarrow y'\left( x \right) = 4\mathop {\lim }\limits_{h \to 0} \dfrac{{2\sin \left( {\dfrac{{2x + h}}{2}} \right)\sin \left( {\dfrac{h}{2}} \right)}}{{h\cos \left( x \right)\cos \left( {x + h} \right)}}
y(x)=4[limh0sin(2x+h2)hcos(x)cos(x+h)×limh0sin(h/2)h/2]\Rightarrow y'\left( x \right) = 4\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {\dfrac{{2x + h}}{2}} \right)}}{{h\cos \left( x \right)\cos \left( {x + h} \right)}} \times \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {h/2} \right)}}{{h/2}}} \right]
As limh0sin(h/2)h/2=1\mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {h/2} \right)}}{{h/2}} = 1.
y(x)=4×sin(x)cos(x)sin(x)×1\Rightarrow y'\left( x \right) = 4 \times \dfrac{{\sin \left( x \right)}}{{\cos \left( x \right)\sin \left( x \right)}} \times 1
y(x)=4sec(x)tan(x)\Rightarrow y'\left( x \right) = 4\sec \left( x \right)\tan \left( x \right)
Therefore, the derivative is y=4sec(x)tan(x)y' = 4\sec \left( x \right)\tan \left( x \right).