Question
Question: How do you find the derivative of \[y=\dfrac{1}{2\sin \left( 2x \right)}\]?...
How do you find the derivative of y=2sin(2x)1?
Solution
As we all know if x and y are real numbers, and if the graph of f is plotted against x, then the derivative of the function is the slope of this graph at each point. There are many rules to find the derivative of functions. To find the derivative of above equationy=2sin(2x)1 with respect to xwherexis independent variable andy is dependent variable if we do any change in x then y also changes with the same rate. we will use quotient rule of differentiation which states that If two differentiable function f(x) and g(x)are in a ration form like g(x)f(x)then the derivative of the equation isdyd(g(x)f(x))=(g(x))2f′ (x)g(x)−g′ (x)f(x) let's take f(x)=1 and g(x)=sin(2x)
Complete step by step answer:
The given equation is
y=2sin(2x)1
Now by using quotient rule dyd(g(x)f(x))=(g(x))2f′ (x)g(x)−g′ (x)f(x) on above given equation, where f′ (x)is the differentiation of f(x) and f(x) is equal to 1
And g′ (x)is the differentiation of g(x) and g(x) is equal to sin2x
Now,
⇒dxdy=21(sin22x(1)′ sin2x−(sin2x)′ )..........(1)
Now differentiation of dxd(1)=0 and differentiation of dxd(sin2x)=2cos2x.
Now put these above values in equation (1), we get
⇒dxdy=21(sin22x0⋅sin2x−2cos2x)⇒dxdy=21⋅(sin22x−2cos2x)⇒dxdy=sin22x−cos2x
Hence by applying simply the quotient rule dyd(g(x)f(x))=(g(x))2f′ (x)g(x)−g′ (x)f(x)the derivative of y=2sin(2x)1 issin22x−cos2x.
Note: Here we simply applied the differentiation just by using quotient rule dyd(g(x)f(x))=(g(x))2f′ (x)g(x)−g′ (x)f(x) .we can go wrong by converting sin2x=2sinxcosx because its became lengthy and need more attention that's why we don’t use it. So carefully solve the question. To find the derivative of any equation we should know the differentiation of functions. Then it became too easy to apply differentiation rules. Here we have a function sin2x whose differentiation is 2cos2x.