Solveeit Logo

Question

Question: How do you find the derivative of \({{x}^{\tan x}}\)?...

How do you find the derivative of xtanx{{x}^{\tan x}}?

Explanation

Solution

First we will assume the given equation to a variable. For the given equation we will apply logarithmic function in order to convert the given equation in form of the multiplication. Now we will apply differentiation to the obtained equation. Here we will use several formulas which are ddx(logx)=1x\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}, ddx(tanx)=sec2x\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x, ddx(uv)=uv+vu\dfrac{d}{dx}\left( uv \right)=u{{v}^{'}}+v{{u}^{'}}. By using the above formulas, we will get the required result.

Complete step by step answer:
Given that, xtanx{{x}^{\tan x}}.
Let y=xtanxy={{x}^{\tan x}}
Applying logarithmic function to the both sides of the above equation, then we will get
log(y)=log(xtanx)\log \left( y \right)=\log \left( {{x}^{\tan x}} \right)
We have logarithmic formula log(ab)=blog(a)\log \left( {{a}^{b}} \right)=b\log \left( a \right), then we will get
logy=tanx.logx\log y=\tan x.\log x
Differentiating the above equation with respect to the xx, then we will have
ddx(logy)=ddx(tanx.logx)\dfrac{d}{dx}\left( \log y \right)=\dfrac{d}{dx}\left( \tan x.\log x \right)
Applying the uvuv rule or ddx(uv)=uv+vu\dfrac{d}{dx}\left( uv \right)=u{{v}^{'}}+v{{u}^{'}} in the above equation, then we will get
ddx(logy)=tanx[ddx(logx)]+logx[ddx(tanx)]\Rightarrow \dfrac{d}{dx}\left( \log y \right)=\tan x\left[ \dfrac{d}{dx}\left( \log x \right) \right]+\log x\left[ \dfrac{d}{dx}\left( \tan x \right) \right]
Using the formulas ddx(tanx)=sec2x\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x, ddx(logx)=1x\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x} in the above equation, then we will get
1ydydx=tanx[1x]+logx[sec2x] dydx=y[sec2xlogx+tanxx] \begin{aligned} & \Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\tan x\left[ \dfrac{1}{x} \right]+\log x\left[ {{\sec }^{2}}x \right] \\\ & \Rightarrow \dfrac{dy}{dx}=y\left[ {{\sec }^{2}}x\log x+\dfrac{\tan x}{x} \right] \\\ \end{aligned}
We have assumed that y=xtanxy={{x}^{\tan x}}, so substituting this value in the above equation, then we will get
dydx=xtanx(sec2xlogx+tanxx)\Rightarrow \dfrac{dy}{dx}={{x}^{\tan x}}\left( {{\sec }^{2}}x\log x+\dfrac{\tan x}{x} \right)

\therefore The derivative of the equation xtanx{{x}^{\tan x}} is xtanx(sec2xlogx+tanxx){{x}^{\tan x}}\left( {{\sec }^{2}}x\log x+\dfrac{\tan x}{x} \right).

Note: In the problem we have the function tanx\tan x as the power of the xx. So, we have applied logarithmic function and thereafter we have used the appropriate formulas. But when the function tanx\tan x is in multiplication of xx, then there is no need of applying a logarithmic function just use the uvuv rule and simplify the obtained equation to get the result.