Solveeit Logo

Question

Question: How do you find the derivative of \[x\ln y-y\ln x=1\]?...

How do you find the derivative of xlnyylnx=1x\ln y-y\ln x=1?

Explanation

Solution

This type of question is based on the concept of implicit differentiation. We can solve this question with the help of product rule of differentiation, that is,ddx(uv)=udvdx+vdudx\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx} where u and v are the functions of ‘x’. Differentiate the given equation with the help of chain rule of differentiation ddxf(y)=f(y)dydx\dfrac{d}{dx}f\left( y \right)={f}'\left( y \right)\dfrac{dy}{dx}. Since the differentiation of a constant is always 0, ddx(1)=0\dfrac{d}{dx}\left( 1 \right)=0. Equate the differentiation of xlnyylnxx\ln y-y\ln x with zero and then find the value of dydx\dfrac{dy}{dx}.

Complete step-by-step answer:
According to the question, we have been given the equation as xlnyylnx=1x\ln y-y\ln x=1.
We need to find the differentiation of xlnyylnx=1x\ln y-y\ln x=1.

First, we have to consider the equation xlnyylnx=1x\ln y-y\ln x=1 -----(1)
Differentiate equation (1) with respect to x
Therefore,
ddx(xlnyylnx)=ddx(1)\dfrac{d}{dx}\left( x\ln y-y\ln x \right)=\dfrac{d}{dx}\left( 1 \right)
We know that differentiation of a constant is always 0.
We get,
ddx(xlnyylnx)=0\dfrac{d}{dx}\left( x\ln y-y\ln x \right)=0 -----(2)
Now using the addition rule of multiplication ddx(u+v)=dudx+dvdx\dfrac{d}{dx}\left( u+v \right)=\dfrac{du}{dx}+\dfrac{dv}{dx} in (2), we get,
ddx(xlnyylnx)=ddx(xlny)+ddx(ylnx)\dfrac{d}{dx}\left( x\ln y-y\ln x \right)=\dfrac{d}{dx}\left( x\ln y \right)+\dfrac{d}{dx}\left( -y\ln x \right)
ddx(xlny)ddx(ylnx)=0\Rightarrow \dfrac{d}{dx}\left( x\ln y \right)-\dfrac{d}{dx}\left( y\ln x \right)=0 -------(3)

Now let us consider ddx(xlny)\dfrac{d}{dx}\left( x\ln y \right).
Using the product rule of differentiation ddx(uv)=udvdx+vdudx\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}, we get,
ddx(xlny)=xddx(lny)+lnydxdx\dfrac{d}{dx}\left( x\ln y \right)=x\dfrac{d}{dx}\left( \ln y \right)+\ln y\dfrac{dx}{dx}
Now, let us use chain rule of differentiation ddxf(y)=f(y)dydx\dfrac{d}{dx}f\left( y \right)={f}'\left( y \right)\dfrac{dy}{dx} in ddx(lny)\dfrac{d}{dx}\left( \ln y \right) and ddx(lnx)=1x\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}, we get,
ddx(xlny)=x1ydydx+lnydxdx\dfrac{d}{dx}\left( x\ln y \right)=x\dfrac{1}{y}\dfrac{dy}{dx}+\ln y\dfrac{dx}{dx}
ddx(xlny)=x1ydydx+lny\Rightarrow \dfrac{d}{dx}\left( x\ln y \right)=x\dfrac{1}{y}\dfrac{dy}{dx}+\ln y
ddx(xlny)=xydydx+lny\Rightarrow \dfrac{d}{dx}\left( x\ln y \right)=\dfrac{x}{y}\dfrac{dy}{dx}+\ln y

Now let us consider ddx(ylnx)\dfrac{d}{dx}\left( y\ln x \right).
Using the product rule of differentiation ddx(uv)=udvdx+vdudx\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}, we get,
ddx(ylnx)=yddx(lnx)+lnxdydx\dfrac{d}{dx}\left( y\ln x \right)=y\dfrac{d}{dx}\left( \ln x \right)+\ln x\dfrac{dy}{dx}
Now, let us use ddx(lnx)=1x\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}, we get,
ddx(ylnx)=y1x+lnxdydx\dfrac{d}{dx}\left( y\ln x \right)=y\dfrac{1}{x}+\ln x\dfrac{dy}{dx}
ddx(ylnx)=yx+lnxdydx\Rightarrow \dfrac{d}{dx}\left( y\ln x \right)=\dfrac{y}{x}+\ln x\dfrac{dy}{dx}

Substituting these values in equation (3), we get,
ddx(xlny)ddx(ylnx)=0\dfrac{d}{dx}\left( x\ln y \right)-\dfrac{d}{dx}\left( y\ln x \right)=0
xydydx+lny(yx+lnxdydx)=0\Rightarrow \dfrac{x}{y}\dfrac{dy}{dx}+\ln y-\left( \dfrac{y}{x}+\ln x\dfrac{dy}{dx} \right)=0
On further simplification, we get,
xydydx+lnyyxlnxdydx=0\Rightarrow \dfrac{x}{y}\dfrac{dy}{dx}+\ln y-\dfrac{y}{x}-\ln x\dfrac{dy}{dx}=0
Now, group all the dydx\dfrac{dy}{dx} to the left-hand side and the rest to the right-hand side.
xydydxlnxdydx=yxlny\Rightarrow \dfrac{x}{y}\dfrac{dy}{dx}-\ln x\dfrac{dy}{dx}=\dfrac{y}{x}-\ln y
Taking dydx\dfrac{dy}{dx} common from the obtained equation, we get,
dydx(xylnx)=yxlny\Rightarrow \dfrac{dy}{dx}\left( \dfrac{x}{y}-\ln x \right)=\dfrac{y}{x}-\ln y
dydx=yxlnyxylnx\Rightarrow \dfrac{dy}{dx}=\dfrac{\dfrac{y}{x}-\ln y}{\dfrac{x}{y}-\ln x}
On taking LCM, we get,
dydx=yxlnyxxylnxy\Rightarrow \dfrac{dy}{dx}=\dfrac{\dfrac{y-x\ln y}{x}}{\dfrac{x-y\ln x}{y}}
dydx=y(yxlny)x(xylnx)\therefore \dfrac{dy}{dx}=\dfrac{y\left( y-x\ln y \right)}{x\left( x-y\ln x \right)}

Hence, the derivative of xlnyylnx=1x\ln y-y\ln x=1 is dydx=y(yxlny)x(xylnx)\dfrac{dy}{dx}=\dfrac{y\left( y-x\ln y \right)}{x\left( x-y\ln x \right)}.

Note: Whenever we get this type of problems, we need to make sure about the rules and properties of differentiation. In this question, we use the differentiation of logarithmic functions. Also, we should avoid calculation mistakes to obtain accurate answers. Similarly, we should not get confused with the sign conventions. Chain rule and product rule of differentiation should be used, if needed.