Solveeit Logo

Question

Question: How do you find the derivative of the function \(y={{e}^{x}}.\ln x\)?...

How do you find the derivative of the function y=ex.lnxy={{e}^{x}}.\ln x?

Explanation

Solution

We start solving the problem by applying the differentiation on both sides of the given equation with respect to x. We then make use of the uv rule of differentiation d(uv)dx=udvdx+vdudx\dfrac{d\left( uv \right)}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx} to proceed through the problem. We then make use of the results d(lnx)dx=1x\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x}, d(ex)dx=ex\dfrac{d\left( {{e}^{x}} \right)}{dx}={{e}^{x}} to proceed further through the problem. We then make the necessary calculations to get the required derivative of the given function.

Complete step by step answer:
According to the problem, we are asked to find the derivative of the given function y=ex.lnxy={{e}^{x}}.\ln x.
We have given the function y=ex.lnxy={{e}^{x}}.\ln x ---(1).
Let us differentiate both sides of equation (1) with respect to x.
ddx(y)=ddx(ex.lnx)\Rightarrow \dfrac{d}{dx}\left( y \right)=\dfrac{d}{dx}\left( {{e}^{x}}.\ln x \right) ---(2).
From uv rule of differentiation, we know that d(uv)dx=udvdx+vdudx\dfrac{d\left( uv \right)}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx}. Let us use this result in equation (2).
dydx=ex.ddx(lnx)+lnx.d(ex)dx\Rightarrow \dfrac{dy}{dx}={{e}^{x}}.\dfrac{d}{dx}\left( \ln x \right)+\ln x.\dfrac{d\left( {{e}^{x}} \right)}{dx} ---(3).
We know that d(lnx)dx=1x\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x}, d(ex)dx=ex\dfrac{d\left( {{e}^{x}} \right)}{dx}={{e}^{x}}. Let us use these results in equation (3).
dydx=ex.1x+lnx.ex\Rightarrow \dfrac{dy}{dx}={{e}^{x}}.\dfrac{1}{x}+\ln x.{{e}^{x}}.
dydx=ex(1x+lnx)\Rightarrow \dfrac{dy}{dx}={{e}^{x}}\left( \dfrac{1}{x}+\ln x \right).
dydx=ex(1+xlnxx)\Rightarrow \dfrac{dy}{dx}={{e}^{x}}\left( \dfrac{1+x\ln x}{x} \right).
dydx=ex(1+xlnx)x\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{x}}\left( 1+x\ln x \right)}{x}.
So, we have found the derivative of the given function y=ex.lnxy={{e}^{x}}.\ln x as dydx=ex(1+xlnx)x\dfrac{dy}{dx}=\dfrac{{{e}^{x}}\left( 1+x\ln x \right)}{x}.

\therefore The derivative of the given function y=ex.lnxy={{e}^{x}}.\ln x as dydx=ex(1+xlnx)x\dfrac{dy}{dx}=\dfrac{{{e}^{x}}\left( 1+x\ln x \right)}{x}.

Note: We should perform each step carefully to avoid confusion and calculation mistakes. We can also solve this problem as shown below:
We have given the function y=ex.lnxy={{e}^{x}}.\ln x.
y=lnxex\Rightarrow y=\dfrac{\ln x}{{{e}^{-x}}} ---(4).
Let us differentiate both sides of equation (4) with respect to x.
ddx(y)=ddx(lnxex)\Rightarrow \dfrac{d}{dx}\left( y \right)=\dfrac{d}{dx}\left( \dfrac{\ln x}{{{e}^{-x}}} \right) ---(5).
From uv\dfrac{u}{v} rule of differentiation, we know that ddx(uv)=vdudxudvdxv2\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}. Let us use this result in equation (5).
dydx=ex.ddx(lnx)+lnx.d(ex)dx(ex)2\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{-x}}.\dfrac{d}{dx}\left( \ln x \right)+\ln x.\dfrac{d\left( {{e}^{-x}} \right)}{dx}}{{{\left( {{e}^{-x}} \right)}^{2}}} ---(6).
We know that d(lnx)dx=1x\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x}, d(ex)dx=ex\dfrac{d\left( {{e}^{-x}} \right)}{dx}=-{{e}^{-x}}. Let us use these results in equation (3).
dydx=ex.1xlnx.(ex)(ex)2\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{-x}}.\dfrac{1}{x}-\ln x.\left( -{{e}^{-x}} \right)}{{{\left( {{e}^{-x}} \right)}^{2}}}.
dydx=ex.1x+exlnx(ex)2\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{-x}}.\dfrac{1}{x}+{{e}^{-x}}\ln x}{{{\left( {{e}^{-x}} \right)}^{2}}}.
dydx=ex(1x+lnx)e2x\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{-x}}\left( \dfrac{1}{x}+\ln x \right)}{{{e}^{-2x}}}.
dydx=ex(1+xlnx)x\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{x}}\left( 1+x\ln x \right)}{x}.